Возникновение и развитие современной робототехники
Как уже было сказано, современная робототехника возникла во второй половине XX столетия, когда в ходе развития производства появилась реальная потребность в универсальных манипуляционных машинах-автоматах, подобных "механическим людям", описанным К. Чапеком, и одновременно возникли необходимые для их создания научно-технические предпосылки и, прежде всего, кибернетика и вычислительная техника. Современными предшественниками роботов явились различного рода устройства для манипулирования на расстоянии объектами, непосредственный контакт человека с которыми опасен или невозможен. Это манипуляторы с ручным или автоматизированным управлением. Первые появившиеся устройства такого рода были пассивными, т. е. механизмами без приводов, и служили для повторения на расстоянии движений руки человека целиком за счет его мускульной силы. Затем были созданы манипуляторы с приводами и управляемые человеком различными способами вплоть до биоэлектрического. Впервые такие манипуляторы были созданы в 1940 — 1950 гг. для атомных исследований, а затем и для атомной промышленности. Подобные устройства стали применяться в глубоководной технике, металлургии и ряде других отраслей промышленности. Первые, полностью автоматически действующие, манипуляторы были созданы в США в 1960 — 1961 гг. В 1961 г. был разработан такой манипулятор, управляемый от ЭВМ и снабженный захватным устройством, очувствленным с помощью различного типа датчиков — контактных и фотоэлектрических. Этот манипулятор МН-1 получил название "рука Эриста" по фамилии его создателя г. Эрнста [1]. Согласно современному определению, ото был прообраз очувствленного робота с адаптивным управлением, что позволило ему, например, находить и брать произвольно расположенные предметы.
В 1962 г. на рынке США появились первые роботы марки "Версатран" (фирмы "Америкэн мэшин энд фаундри"), предназначенные для промышленного применения. Одновременно возник термин "промышленный робот" (Indastrial Robot), по-видимому, предложенный этой фирмой. В то же время в США появились роботы "Юнимейт-1900", которые получили первое применение в автомобильной промышленности на заводах фирм "Дженерал моторс", "Форд" и "Дженерал электрик". Хронология дальнейшего развития производства роботов такова: - в 1967 г. начат выпуск роботов в Англии по лицензии США; - в 1968 г. — в Швеции и Японии (тоже по лицензиям США); - в 1971 г. — в ФРГ, в 1972 г. — во Франции; в 1973 г. — в Италии. Динамика роста парка роботов в мире выглядит следующим образом:
В среднем парк роботов в мире возрастает в год на 20 — 30%, а в 1998 г. он превысил 1 млн. шт. За последние 10 лет XX столетия стоимость промышленных роботов упала в 5 раз при одновременном улучшении их технических характеристик. В результате возросла экономическая эффективность использования роботов. Первое место в мире по производству и применению роботов уверенно занимает КНР и Япония, где сосредоточена большая часть мирового парка роботов. Далее следуют США, Италия, Франция, Швеция. Большая часть этого парка используется в промышленности, примерно половина — для выполнения основных технологических операций, где требуются наиболее сложные роботы. Доля таких роботов неуклонно растет. Технический прогресс в развитии роботов направлен, прежде всего, на совершенствование систем управления. Первые промышленные роботы имели программное управление, в основном заимствованное у станков с числовым программным управлением (ЧПУ). Из станкостроения были взяты и приводы. Эти роботы получили название роботов первого поколения. Второе поколение роботов — это очувствленные роботы, т.e. снабженные сенсорными системами, главными из которых являются системы технического зрения (СТЗ).
Первые промышленные роботы с развитым очувствлением п микропроцессорным управлением появились на рынке и получили практическое применение и 1980 1981 гг. прежде всего на сборке, дуговой сварке, контроле качества для взятия неориентированных предметов, например, с конвейера. К их числу относятся снабженные системами технического зрения роботы "Пума", "Юнимейт", "Ауто-плейс", "Цинциннати милакрон", сборочные робототехнические системы фирм "Хитачи", "Вестингауз" (система "Апас"), "Дженерал моторс" (система "Консайт"). Доля таких устройств в общем парке роботов неуклонно растет и приближается к 50 % несмотря на то, что они в несколько раз дороже роботов с программным управлением и значительно сложнее в обслуживании. Однако это окупается неизмеримо большими функциональными возможностями, а, следовательно, и более широкой областью применения. На рубеже XXI в. робототехника подошла к следующему этапу своего развития — созданию интеллектуальных роботов. Это стало естественным этапом совершенствования роботов, соответствующим исходной идее появления подобных устройств как заменителей людей в их профессиональной деятельности. (Разумеется, ни о каком техническом воспроизведении человека вообще, включая все его основные функции и духовный мир, речь при этом не идет.) Интеллектуальный робот — это робот конкретного назначения, в основных функциональных системах которого используются методы искусственного интеллекта, что позволяет расширить сферу применения робототехники практически на все области человеческой деятельности. Пока такие роботы — в основном еще предмет научных исследований и лабораторных испытаний, однако первые их образцы уже начинают появляться на рынке. В 1967 г. в США (Станфордский университет) был создан лабораторный макет робота, снабженного техническим зрением и предназначенного дли исследования и отработки системы "глаз-рука", способной распознавать объекты внешней среды и оперировать ими в соответствии с заданием.
В 1968 г. в СССР (Институтом океанологии Академии наук СССР совместно с Ленинградским политехническим институтом и другими вузами) был создан телеуправляемый от ЭВМ подводный робот "Манта" с очувствленным захватным устройством, а в 1971 г. — следующий его вариант с техническим зрением и системой целеуказания на телевизионном экране. В 1969 г. в США (Станфордский научно-исследовательский институт) в рамках работ по искусственному интеллекту был разработан экспериментальный макет подвижного робота "Шейки" с развитой системой сенсорного обеспечения, включая техническое зрение, обладавшего элементами искусственного интеллекта, что позволило ему целенаправленно передвигаться в заранее неизвестной обстановке, самостоятельно принимая необходимые для этого решения. В 1971 г. в Японии также были разработаны экспериментальные образцы роботов с техническим зрением и элементами искусственного интеллекта: робот "Хивип", способный самостоятельно осуществлять механическую сборку простых объектов по предъявленному чертежу, и робот ЭТЛ-1. В этот же период и в ряде других стран создаются подобные экспериментальные установки так называемых интегральных роботов, включающих в себя манипуляторы, управляющие ЭВМ, различные средства очувствления и общения с человеком-оператором, которые предназначены для проведения исследований в области искусственного интеллекта и создания интеллектуальных роботов. Одновременно были развернуты работы в новой специфической области робототехники, занимающейся построением шагающих машин как принципиально нового транспортного средства повышенной проходимости, образцом для которого являются ноги животных и человека. Были созданы экспериментальные образцы четырех- и шестиногих транспортных машин, а также протезов ног человека, так называемых экзоскелетонов, для парализованных и тяжелобольных.
В конце XX в. возродился интерес к роботам-андроидам. В отличие от их первых реализаций последние достижения робототехники сделали возможным создание подобных устройств для обеспечения вполне реальных потребностей. На слайде показан образец такого робота. Он способен двигаться по лестнице и преодолевать другие препятствия, выполнять весьма сложные манипуляции и вести диалог с человеком. Робот предназначен для домашних работ, может быть гидом, экскурсоводом и т.п. Его вес — 43 кг, скорость ходьбы — до 1,6 км/час. Наряду с описанным ранее процессом интеллектуализации робототехники еще одной общей тенденцией ее развития стала миниатюризация. Оба эти направления соответствуют общей тенденции развития техники в целом. Процесс миниатюризации техники начался с информационно-управляющих систем на базе микроэлектроники. Затем уже на рубеже XXI в. началась миниатюризация сенсорных и исполнительных (силовых) систем на базе трехмерных технологий микроэлектромеханических систем (МЭМС). В робототехнике эта тенденция проявляется созданием микророботов различного назначения, от промышленных и медицинских до военных. На слайде показан микроманипулятор для точного позиционирования образцов в электронном микроскопе. Как уже упоминалось во введении, одним из основных направлений применения роботов, которое в значительной мере определяет и проблематику, и темпы развития современной робототехники в целом, является комплексная автоматизация производства, создание гибких автоматизированных производств, прежде всего, в машиностроении. Роботы как универсальное гибкое средство для выполнения в первую очередь мани-пуляционных действий — важный компонент таких производств. История гибкой автоматизации началась в 1955 г. с появления станков с ЧПУ. Именно такого типа автоматическое технологическое оборудова-ние с быстросменяемыми программами работы является основой для создания гибких, т. е. быстро перестраиваемых на выпуск новой продукции, производств. Однако для реализации идеи гибкой автоматизации необходимо было выполнение еще ряда условий. Этим и объясняется то, что первые станки с ЧПУ распространялись очень медленно. За первые 10 лет их доля в общем парке станков в технически передовых странах не достигла и 0,1%. Ситуация резко изменилась в 1970-е гг. с появлением следующего важнейшего компонента гибкой автоматизации — микропроцессорных систем управления, обеспечивших резкое снижение стоимости систем ЧПУ и повышение их надежности. Роботы как еще один обязательный компонент гибкой автоматизации появились в промышленности, как уже было указано, несколько раньше. В результате возникли все необходимые компоненты для развития гибких автоматизированных производств, а именно: технологическое оборудование с программным управлением, микропроцессоры как универсальное гибкое средство для обработки информации и роботы как универсальное гибкое средство для манипуляционных действий, требующихся как для выполнения ряда основных технологических операций (сборка, сварка, окраска и т. п.), так и многочисленных вспомогательных операций по обслуживанию различного технологического оборудования.
Одновременно роботы начинают все более широко проникать и в другие отрасли хозяйства, включая горное дело, металлургию, строительство, транспорт, легкую и пищевую промышленность, сельское хозяйство, а также в медицину, сферу обслуживания, освоение океана и космоса, военное дело. В последние годы все более быстрыми темпами растет доля парка роботов, занятых вне промышленности — в сфере обслуживания, в быту, (сервисные роботы — уборщики, продавцы, вахтеры, игрушки и т.д.), она (доля) уже приближается к 50% парка. Почти во всех технически развитых странах созданы национальные ассоциации по робототехнике. В ряде стран имеются финансируемые государством национальные программы по этой проблеме. Развиваются такие программы на международном уровне.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|