Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Хемиосмотическая теория фотофосфорилирования




(от позднегреч. chemeia — химия и греч. osmos — толчок, давление), учение о механизме преобразования энергии в биол. мембранах при синтезе аденозинтрифосфорной к-ты (АТФ). Разработана П. Митчеллом в 1961—66. Согласно исходным представлениям Митчелла, запасание энергии в АТФ происходит вследствие предварит, накопления зарядов на стенках мембраны, создания мембранного потенциала и разности концентраций протонов. Разность электрохимич. потенциалов ионов водорода на сопрягающих мембранах (внутр. мембраны митохондрий, тилакоиды хлоропластов, мембраны бактерий) возникает за счёт энергии, выделяемой при деятельности цепи окислит.-восстановит, ферментов, или за счёт поглощённых квантов света. Трансмембранные электрохимич. потенциалы ионов могут служить источником энергии не только для синтеза АТФ, на и для транспорта веществ, движения бактериальных клеток и др. энергозависимых процессов.

24. КВАНТОВЫЙ ВЫХОД ФОТОСИНТЕЗА, соотношение между количеством молекул усвоенного углекислого газа или образовавшихся молекул кислорода и числом квантов, поглощенных фотосинтезирующим аппаратом.

Квантовый выход фотосинтеза иллюстрирует эффективность использования растением света при фотосинтезе. Максимальное значение К. в. ф. при 100%-ной конверсии поглощенной энергии составляет 0,34 02 на 1 квант красного света. В литературе чаще используется понятие квантового расхода (КР), являющееся величиной, обратной К. в. ф. Минимальное значение КР для образования одной молекулы 02 составляет 8 квантов. Коэффициент полезного действия трансформации световой энергии в химическую при КР-8 составляет 37%. При неблагоприятных для растений условиях среды КР может увеличиваться в десятки, сотни и более раз, что свойственно и виноградному растению.

15. Субстраты дыхания. Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И. П. Бородина было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании. В выяснении данного вопроса большое значение имеет определение дыхательного коэффициента. Дыхательный коэффициент (ДК) — это объемное или молярное отношение СО2, выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени О2. При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыханий используются углеводы, то процесс идет согласно уравнению СбН12Сб + 6О2 = 6СО2 + 6Н2О. В этом случае ДК равен единице. Однако если разложению в процессе дыхания подвергаются более окисленные соединения, например органические кислоты,поглощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше единицы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэффициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке углеводов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного питательного вещества содержатся жиры или белки. В этом случае дыхательный коэффициент становится меньше единицы. При использовании в качестве дыхательного материала жиров происходит их расщепление до глицерина и жирных кислот. Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

16. Дыхательный коэффициент. Дыхательный коэффициент (ДК) — это объемное или молярное отно­шение С02, выделившегося в процессе дыхания, к поглощенному за этот же про­межуток времени 02. При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыхания используются углеводы, то про­цесс идет согласно уравнению С6Н1206 +602 —> 6С02 + 6Н20. В этом случае ДК равен единице: 6С02/602 = 1. Однако если разложению в процессе дыхания под­вергаются более окисленные соединения, например органические кислоты, по­глощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33.

1) Общее представление о дыхании и связанным с ним обменом веществ. Дыхание — один из центральных процессов обмена веществ растительного организма. Выделяющаяся при дыхании энергия тратится как на процессы роста, так и на поддержание в активном состоянии уже закончивших рост органов раст. Вместе с тем значение дыхания не ограничивается тем, что это процесс, поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно-восстановительный процесс, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы, образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания — источник многих метаболитов. Суммарное уравнение процесса дыхания:
С6H12O6+6O2->6СО2+6Н2О+2824кДж
Как видно из суммарного уравнения, в процессе дыхания образуется также вода. Эта вода в крайних условиях обезвоживания может быть использована растением и предохранить его от гибели. В некоторых случаях, когда энергия дыхания выделяется в виде тепла, дыхание ведет к бесполезной потере сухого вещества. В этой связи при рассмотрении процесса дыхания надо помнить, что не всегда усиление процесса дыхания является полезным для растительного организма.Процесс дыхания представляет собой центральное звено обмена веществ организма и тесно связан с другими процессами метаболизма. При дыхании поглощается кислород и выделяется
углекислый газ. Установлено, что дыхание животных и растений протекает однотипно, несмотря на отсутствие у растений специальных органов дыхания. Процесс дыхания связан с непрерывным потреблением кислорода клетками и тканями растений и осуществляется при участии различных ферментов. Вначале сложные органические вещества (белки, жиры, углеводы) под действием
ферментов распадаются на более простые, которые при участии кислорода расщепляются до конца, т.е. до образования углекислого газа и воды. При этом освобождается энергия, которая используется растением (а также любым живым организмом) на процессы жизнедеятельности: поглощение из почвы воды и минеральных веществ, их передвижение, рост, развитие, размножение.В освобождении энергии, заключенной в органических веществах, состоит главное значение дыхания. По существу, при дыхании освобождается солнечная энергия, которую растение использовало в процессе фотосинтеза на образование органических веществ и таким путем запасло ее.В процессе дыхания окисление сложных органических веществ до углекислого газа и воды происходит постепенно и энергия освобождается небольшими порциями. Если бы энергия освобождалась вся сразу, тогда клетка сгорела бы.

2).Характеристика брожения у растений.Брожение – это диссимиляционный процесс с оброзованием богатого энергией конечного продукта. Вид этого продукта и дает название брожению. Происходит в мясистых органах,плодах,а также в корнях растений при затоплении.

Брожение не высвобождает всю имеющуюся в молекуле энергию, поэтому промежуточные продукты брожения могут использоваться в ходе клеточного дыхания.

Первый этап, то есть гликолиз, одинаков при брожении и дыхании. Поворотным моментом является образование пировиноградной кислоты. Впервые Л. Пастер показал, что в присутствии кислорода брожение у дрожжей заменяется дыханием. Дело в том, что для брожения необходим НАДН, который в аэробных условиях окисляется. Это явление характерно и для высших растений и получило название эффекта Пастера.В зависимости от конечного продукта различают разные типы брожения: спиртовое и молочнокислое. В присутствии кислорода может происходить уксуснокислое брожение.

 

3).Биологическое окисление. Окисление биологическое,совокупность реакций окисления, протекающих во всех живых клетках. Основная функция О. б. — обеспечение организма энергией в доступной для использования форме. Реакции О. б. в клетках катализируют ферменты, объединяемые в класс оксидоредуктаз.

В процессе дых участвует сложная цепь окисл-восстан превращений углеводов и жиров. Под окислением какого-либо соединения понимают процесс потери им электрона (протона), под восстановлением – их присоединение. Нередко процесс отдачи электрона может происходить без участия кислорода. Cu+-e→Cu2++e

Способность в-ва к окислению сильно возрастает, если оно предварит гидратируется. RСОН+Н2О→RН2СОН→RСОН+2Н++2е

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...