Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Дыхательные мышцы. Факторы, определяющие напряжение дыхательных мышц




Дыхательные мышцы

 

При спонтанном дыхании активность инспираторных мышц необходима для преодоления импеданса дыхательной системы. Важнейшей мышцей вдоха является диафрагма — куполообразная скелетная мышца, разделяющая грудную и брюшную полости. Диафрагма состоит из двух частей: реберной, прикрепляющейся к ребрам; и круральной, окружающей центральные органы (например, пищевод) и не прикреп­ленной к ребрам. При спокойном дыхании диафрагма является единственной ак­тивной инспираторной мышцей. При необходимости увеличения вентиляции, на­пример при физической нагрузке или болезненных состояниях, подобных бронхи­альной астме, активизируются и другие мышцы. К ним относятся наружные межре­берные, лестничные и грудино-ключично-сосцевидные мышцы. Две последние груп­пы мышц называются дополнительными дыхательными мышцами.

В отличие от вдоха, выдох в нормальных условиях в состоянии покоя происхо­дит пассивно. Эластическая отдача легких и грудной стенки обеспечивает возникно­вение градиента давления, достаточного для экспираторного потока (разделы " Элас­тические свойства дыхательной системы" и " Свойства дыхательной системы, опре­деляющие сопротивление потоку" ). При обструкции ВП выдох становится актив­ным процессом, требующим работы экспираторных мышц, включая внутренние меж­реберные и брюшные (наружную и внутреннюю косую, поперечную брюшную и пря­мую брюшную). Дополнительными мышцами выдоха являются мышцы голосовой щели и диафрагма. Причем первые из них сужают голосовую щель, обеспечивая снижение скорости экспираторного потока. Сокращение диафрагмы в начале выдоха приводит в дальнейшем к его торможению. Это тормозящее действие, наблюдаемое во время спокойного дыхания, противостоит экспираторному эффекту давления ста­тической эластической отдачи, генерированному во время предыдущего вдоха.

 

Факторы, определяющие напряжение дыхательных мышц

 

Как всякая скелетная мускулатура, дыхательные мышцы характеризуются сле­дующими отношениями: длина-напряжение, сила-частота и сила-скорость. Кроме того, поскольку диафрагма имеет куполообразную форму, необходимо особо рас­смотреть отношение между давлением и радиусом кривизны в соответствии с зако­ном Лапласа.

Сила, развиваемая скелетной мышцей конечности, является функцией ее дли­ны (рис. 2-1). При постоянном уровне стимуляции максимальное напряжение дос­тигается при длине покоящейся мышцы. Любое сокращение или растягивание мыш­цы перед стимуляцией приводит к субмаксимальному напряжению. Однако, в отли­чие от скелетной мышцы конечности, диафрагма развивает пиковую величину силы приблизительно при 130 % ее длины в состоянии покоя. Снижение напряжения мышцы при меньшей ее длине, т. е. при увеличении объема легких в покое, приобре­тает важное клиническое значение. Например, при хронической обструктивной бо­лезни легких, включающей хронический бронхит и эмфизему (гл. 6), гиперинфля­ция легких приводит к уплощению диафрагмы. Такая диафрагма имеет меньшую длину и поэтому развивает меньшую силу. Она работает в невыгодных, с точки зре­ния механики, условиях.

Рис. 2-1. Отношение длина-напряжение для скелетной мышцы конечности и диаф­рагмы. Мышца конечности развивает максимальное на­пряжение при длине покоя, диафрагма - при длине око­ло 130 % уровня покоя.

 

Сила сокращения является также функцией частоты стимуляции мышечного волокна и скорости его укорочения (рис. 2-2). До определенного момента сила уве­личивается с повышением частоты стимуляции, затем остается постоянной, несмотря на дальнейшее увеличение частоты стимула (рис. 2-2А). С другой стороны, при больших скоростях укорочения мышцы развивается меньшее напряжение (рис. 2-2Б). Клинический смысл такого соотношения заключается в том, что при данном уровне стимуляции дыхательных мышц большая объемная скорость воздушного потока воз-н икает при меньшем напряжении, поскольку объемная скорость потока прямо про­порциональна скорости укорочения мышц.

В дополнение к этим фундаментальным отношениям необходимо рассмотреть уникальную геометрию диафрагмы как куполообразной мышцы. Закон Лапласа опи­сывает отношение между давлением, напряжением и радиусом кривизны:

Р = 2Т/r, [2-1]

где: Р — давление, создаваемое мышцей, Т — напряжение мышцы, r — радиус кривизны.

 

По мере уплощения диафрагмы радиус ее кривизны увеличивается и генерируемое давление понижается (рис. 2-3). Это явление, вместе с укорочением мышцы, обус­ловливает снижение силы диафрагмы при гиперинфляции у пациентов с хроничес­кой обструктивной болезнью легких.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...