Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные типы ЯМР-спектрометров




Билет 1

Современная аналитическая химия. Классификации биологических объектов. Методология получения биологического материала и экстракции биологических молекул и субклеточных структур

Биологические объекты:

1. Простые и сложные биологические молекулы, различные субклеточные структуры (ДНК и РНК клеточного, паразитического и симбиотического происхождения, органеллы и др. внутриклеточные структуры), вирусы, одноклеточные и многоклеточные организмы.

2. Биологическое содержимое биосферы (биологические вещества, организмы и их содержимое).

3. Простые химические вещества, в контексте их биологического действия.

Аналитическая химия:

Аналитическая химия рассматривает «принципы и методы определения химического состава вещества. Включает качественный анализ и количественный анализ». Занимается разработкой методов, аппаратуры и общей стратегии исследования качественного и количественного состава веществ и отдельных химических компонентов, а также их пространственной структуры и изменения во времени.Современная аналитическая химия характеризуется использованием огромного разнообразия различных физических методов и применением электронно-вычислительных средств обработки и анализа полученных в результате измерений данных.

Общая схема процесса химического анализа.

Методология получения биологического материала и экстракции биологических молекул и субклеточных структур.

Принципы ЯМР-спектрометрии

Ядерный магнитный резонанс (ЯМР) — резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер.

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Приборы

Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле, действующее на нее, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем ядра, лишенные электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его еще называют методом непрерывного облучения (CW, continous wave).

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и, как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν0. Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт.

В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер — так называемый «спад свободной индукции» (FID, free induction decay). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование, по которому любая функция может быть представлена в виде суммы множества гармонических колебаний.

Спектры ЯМР

(Спектр 1H 4-этоксибензальдегида. В слабом поле (синглет ~9,25 м.д) сигнал протона альдегидной группы, в сильном (триплет ~1,85-2 м.д.) — протонов метила этоксильной группы.)

 

 

Для качественного анализа с помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

· сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;

· интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;

· ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1Н и13С применяют тетраметилсилан Si(CH3)4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчета констант экранирования и на их основании соотнести сигналы.


Билет 2

Основные типы ЯМР-спектрометров

 

Базовая ЯМР техника

ЯМР образец помещается в тонкостенную стеклянную трубку. Когда ее помещают в магнитное поле, ЯМР активные ядра (такие как 1H или 13C) поглощают электромагнитную энергию. Резонансная частота, энергия абсорбции и интенсивность испущенного сигнала пропорциональны силе магнитного поля. Так в поле в 21 Тесла, протон резонирует при частоте 900 МГц.

Химический сдвиг

В зависимости от местного электронного окружения, разные протоны в молекуле резонируют на слегка отличающихся частотах. Так как и это смещение частоты и основная резонансная частота прямо пропорциональны силе магнитного поля, то это смещение преобразуется в независимую от магнитного поля безразмерную величину известную как химический сдвиг. Химический сдвиг определяется как относительное изменение относительно некоторых эталонных образцов. Частотный сдвиг экстремально мал в сравнении с основной ЯМР частотой. Типичный сдвиг частоты равен 100 Гц, тогда как базовая ЯМР частота имеет порядок 100 МГц. Таким образом химический сдвиг часто выражается в частях на миллион (ppm). Для того что обнаружить такое маленькое различие частоты, приложенное магнитное поле должно быть постоянным внутри объема образца.

Так как химический сдвиг зависит от химического строения вещества, он применяется для получения структурной информации о молекулах в образце. К примеру, спектр для этанола (CH3CH2OH) дает 3 отличительных сигнала, то есть 3 химических сдвига: один для группы CH3, второй для СН2-группы и последний для OH. Типичный сдвиг для CH3-группы примерно равен 1 ppm, для CH2-группы присоединенной к OH-4 ppm и OH примерно 2—3 ppm.

Из-за молекулярного движения при комнатной температуре 3 метиловых протона вылетают в среднем в течение ЯМР процесса, который длится лишь несколько миллисекунд. Эти протоны вырождаются и формируют пики при том же химическом сдвиге. Программное обеспечение позволяет проанализировать размер пиков для того, чтобы понять, как много протонов дает вклад в эти пики.

Спин-спиновое взаимодействие:

Наиболее полезную информацию для определения структуры в одномерном ЯМР-спектре даёт так называемое спин-спиновое взаимодействие между активными ЯМР ядрами. Это взаимодействие возникает в результате переходов между различными спиновыми состояниями ядер в химических молекулах, что приводит к расщеплению сигналов ЯМР. Это расщепление может быть простым и сложным и, как следствие, его либо просто интерпретировать, либо оно может запутать экспериментатора.

Это связывание обеспечивает детальную информацию о связях атомов в молекуле.

Взаимодействие второго порядка (сильное)

Простое спин-спиновое взаимодействие предполагает, что константа взаимодействия мала в сравнении с разницей в химических сдвигах между сигналами. Если разность сдвигов уменьшается (или константа взаимодействия увеличивается), интенсивность мультиплетов образцов искажается, становится более сложной для анализа (особенно если система содержит более 2 спинов). Однако в мощных ЯМР-спектрометрах искажения обычно умеренные и это позволяет легко интерпретировать связанные пики.

Эффекты второго порядка уменьшаются с увеличением разницы частоты между мультиплетами, поэтому высокочастотный ЯМР спектр показывает меньшее искажение чем низкочастотный спектр.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...