Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Электрические аппараты защиты




> Плавкие предохранители.

> Электротепловые реле.

При эксплуатации электрооборудования и электрических сетей длительные перегрузки проводов и кабелей, а также короткие замы­кания вызывают повышение температуры токопроводящих жил свы­ше допустимых значений. Это приводит к преждевременному изна­шиванию их изоляции, вследствие чего может произойти пожар или взрыв во взрывоопасных помещениях, а также поражение людей электрическим током.

Для предохранения от чрезмерного нагрева проводов, кабелей и токопроводящих частей электрооборудования каждый участок элек­трической сети должен быть снабжен защитным аппаратом, обеспе­чивающим отключение аварийного участка при непредвиденном уве­личении токовой нагрузки сверхдлительно допустимой.


Аппаратом защиты называется аппарат, автоматически отклю­чающий защищаемую электрическую цепь при ненормальных режи­мах.

К аппаратам защиты относятся: плавкие предохранители, авто­матические выключатели, тепловые и токовые реле.

Защита электродвигателей и электрической сети осуществляется от коротких замыканий (КЗ): однофазных, междуфаз­ных и перегрузки.

Защита от коротких замыканий выполняется обязательно для всех электродвигателей (электроприемников) и электрических сетей.

Защита от перегрузки выполняется для электродвигателей продол­жительного режима работы, за исключением случаев, когда такая пере­грузка маловероятна (электродвигатели вентиляторов, насосов и т. д.).

Для электродвигателей, работающих в повторно-кратковременном режиме, например, грузоподъемные механизмы, защита от перегрузки не выполняется.

Плавкие предохранители

Предохранитель - это коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи разрушением специально предусмотренных для этого токоведущих частей под дей­ствием тока, превышающего определенное значение.

В плавких предохранителях отключение цепи происходит за счет расплавления плавкой вставки, которая нагревается протекаю­щим через нее током защищаемой цепи. После отключения цепи не­обходимо заменить плавкую вставку исправной.

Предохранитель включается последовательно в защищаемую цепь, а для создания видимого разрыва электрической цепи и безо­пасного обслуживания совместно с предохранителями применяются неавтоматические выключатели или рубильники.

Предохранители изготавливаются на напряжение переменного тока 42, 220, 380, 660 В и постоянного тока 24, 110, 220, 440 В.

Основными элементами предохранителя являются корпус, плав­кая вставка (плавкий элемент), контактная часть, дугогасительное устройство и дугогасительная среда.

Предохранители характеризуются номинальным током плавкой вставки, т. е. током, на который рассчитана плавкая вставка для дли­тельной работы. В один и тот же корпус предохранителя могут быть вставлены сменные плавкие элементы на различные номинальные то­ки, поэтому сам предохранитель характеризуется номинальным током


предохранителя (основания), который равен наибольшему из номи­нальных токов плавких вставок, предназначенных для данной конст­рукции предохранителя. Например, предохранители серии ПН2 и ПР2 имеют сменные плавкие вставки. Так предохранитель серии ПН2-100 имеет корпус, рассчитанный на ток до 100 А и сменные плавкие вставки на токи 30, 40, 50, 60, 80, 100 А.

Предохранители до 1 кВ изготавливаются на номинальные токи до 1000 А.

В нормальном режиме тепло, выделяемое током нагрузки в плавкой вставке, передается в окружающую среду, и температура всех частей предохранителя не превышает допустимую. При пере­грузке или КЗ температура вставки увеличивается и она расплавляет­ся. Чем больше протекающий ток, тем меньше время плавления. За­висимость времени плавления плавкой вставки от величины тока (кратности тока срабатывания по отношению к номинальному току плавкой вставки) называется защитной (время - токовой) характери­стикой предохранителя (рис. 3.1.). При одном и том же токе время плавления плавкой вставки зависит от многих причин (материала вставки, состояния ее поверхности, условий охлаждения и т. д.). Что­бы уменьшить время срабатывания предохранителя, применяются плавкие вставки из разного материала, специальной формы, а также используется металлургический эффект.

Наиболее распространенными материалами плавких вставок яв­ляются медь, цинк, алюминий, свинец и серебро.

Медные вставки подвержены окислению, их сечение со време­нем уменьшается и защитная характеристика предохранителя изменя­ется. Для уменьшения окисления обычно применяют луженые мед­ные вставки. Температура плавления меди 1080 °С, поэтому при токах, близких к минимальному току плавления, температура всех элементов предохранителя значительно возрастает.

Цинк и свинец имеют низкую температуру плавления (419 °С и 327 °С), что обеспечивает небольшой нагрев предохранителей в продолжительном режиме.

Цинк стоек к коррозии, поэтому сечение плавкой вставки не ме­няется во время эксплуатации, защитная характеристика остается по­стоянной. Цинк и свинец имеют большие удельные сопротивления, поэтому плавкие вставки оказываются большого сечения. Такие плав­кие вставки обычно применяются в предохранителях без наполните­лей. Предохранители со вставками из цинка и свинца имеют большие выдержки времени при перегрузках.




Рис. 3.1. Время-токовая характеристика плавкого предохранителя

Серебряные вставки не окисляются, и их характеристики наибо­лее стабильны.

Алюминиевые вставки применяются в предохранителях в связи с дефицитом цветных металлов. Высокое сопротивление окисных пленок на алюминии затрудняет осуществление надежного разъемно­го контакта. Алюминиевые вставки находят применение в новых кон­струкциях предохранителей серии ПП31.

При больших токах плавкие вставки предохранителей выпол­няются из параллельных проволок или тонких медных полос.

Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зави­симость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рис. 1.1) во всех точках шла немного ниже характеристики защищае­мой цепи или объекта (кривая 2 на рис. 3.1). Однако ре­альная характеристика предохранителя (кривая 3) пересе­кает кривую 2. Поясним это. Если характеристика предо­хранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. По­этому ток плавления вставки выбирается больше номи­нального тока нагрузки. При этом кривые 2 и 3 пересека­ются. В области больших перегрузок (область Б) предо­хранитель защищает объект. В области А предохранитель объект не защищает.

При небольших перегрузках (l,5–2) I H0M нагрев предо­хранителя протекает медленно. Большая часть тепла отда­ется окружающей среде. Сложные условия теплоотдачи затрудняют расчет плавкой вставки.

Ток, при котором плавкая встав­ка сгорает при достижении ею уста­новившейся температуры, называет­ся пограничным током I ПОГР.

Для ускорения плавления вставок из меди и серебра используется металлургический эффект - явление растворения тугоплавких металлов в расплавленных, менее тугоплавких. Если, например, на медную про­волоку диаметром 0,25 мм напаять шарик из оловянно-свинцового сплава с температурой плавления 182 °С, то при температуре проволоки 650 °С она расплавится в течение 4 мин, а при 350 °С - в течение 40 минут. Та же проволока без растворителя плавится при температуре не менее 1000 °С [7]. Для создания металлургического эффекта на мед­ных и серебряных вставках применяют чистое олово, обладающее более стабильными свойствами. В нормальном режиме работы шарик практи­чески не влияет на температуру вставки.


а) б)

Рис 3.2. Плавкий предохранитель серии ПР2: а — патрон; б — формы плавких вставок

Ускорение плавления вставки достигается также применением плавкой вставки специальной формы (рис. 3.2, б). При токах КЗ узкие участки нагреваются настолько быстро, что отвод тепла почти не происходит. Вставка перегорает одновременно в нескольких сужен­ных местах (сечение А - А и В - В, рис. 3.2, б) прежде, чем ток КЗ достигнет своего установившегося значения в цепи постоянного тока или ударного тока в цепи переменного тока (рис. 3.3).

а) б)

Рис. 3.3. Токоограничивающий эффект плавких вставок

предохранителей: а - при постоянном токе;

б - при переменном токе

Ток КЗ при этом ограничивается до значения iогр (в 2-5 раз). Та­кое явление называется токоограничивающим действием и улучшает условия дугогашения в предохранителях.

Гашение электрической дуги, возникающей после перегорания плавкой вставки, должно осуществляться в возможно короткое время. Время гашения дуги зависит от конструкции предохранителя.


Наибольший ток, который плавкий предохранитель может от­ключать без каких-либо повреждений или деформаций, называется предельным током отключения.

Предохранители получили широкое применение для защиты электродвигателей, электрооборудования, электрических сетей в про­мышленных, бытовых электроустановках и имеют различную конст­рукцию.

Плавкие предохранители наряду с простотой их устройства и малой стоимостью имеют ряд существенных недостатков:

- не могут защитить линию от перегрузки, так как допускают
длительную перегрузку до момента плавления;

- не всегда обеспечивают избирательную защиту в сети вслед­
ствие разброса их характеристик;

- при коротком замыкании в трехфазной сети возможно сраба­
тывание одного из трех предохранителей и линия остается работать
на двух фазах.

В этом случае трехфазные электродвигатели, подключенные к сети, оказываются включенными на две фазы, а это приводит к пе­регреву обмоток электродвигателей и их выходу из строя.

Предохранители с закрытыми разборными корпусами (патрона­ми) без наполнителя серии ПР2 (рис. 3.2) изготавливаются на напря­жение 220 и 500 В и номинальные токи 100-1000 А. Патрон предо­хранителя ПР2 (рис. 3.2, а) на токи 100 А и выше состоит из толстостенной фибровой трубки 1, на которую плотно насажены ла­тунные втулки 3, имеющие мелкую резьбу. На трубки навинчиваются латунные колпачки 4, которые закрепляют плавкую вставку 2, при­винченную к ножам 6, до установки ее в патрон. В предохранителях этой серии предусмотрена шайба 5, имеющая паз для ножа и предот­вращающая поворот ножей.

Патрон вставляется в неподвижные контактные стойки, укреп­ленные на изоляционной плите. Необходимое контактное нажатие обеспечивается пружинами.

Плавкие вставки изготавливаются из цинка в виде пластины с вырезами. На суженных участках выделяется больше тепла, чем на широких. При номинальном токе избыточное тепло благодаря тепло­проводности цинка передается широким частям, поэтому вся вставка имеет примерно одинаковую температуру. При перегрузках нагрев узких участков происходит быстрее, и вставка плавится в самом горя­чем месте (сечение А - А, рис. 3.2, б).


При КЗ вставка плавится в узких сечениях А - А и В - В. Воз­никающая дуга вызывает образование газов (50 % СО2, 40 % Н2, 10 % паров Н2О), так как стенки патрона выполнены из газогенери-рующего материала - фибры. Давление в зависимости от отключае­мого тока может достигать 10 МПа и более, что обеспечивает быстрое гашение дуги и токоограничивающее действие предохранителя. Для уменьшения возникающего при отключении тока КЗ перенапряжения плавкая вставка имеет несколько суженных мест. При их поочеред­ном плавлении полная длина дугового промежутка вводится в цепь не сразу, а ступенями.

Предохранители насыпные серии ПН2 (рис. 3.4) широко приме­няются для защиты силовых цепей до 500 В переменного и 440 В по­стоянного тока и выпускаются на номинальные токи 100-1000 А.


 
 

1 2

8 7 6

Рис. 3.4. Плавкий предохранитель серии ПН2

Фарфоровая, квадратная снаружи и круглая внутри, трубка 1 имеет четыре резьбовых отверстия для винтов, с помощью которых крепится крышка 4 с уплотняющей прокладкой 5. Плавкая вставка 2 приварена электроконтактной точечной сваркой к шайбам контакт­ных ножей 3. Крышки с асбестовыми прокладками герметически за­крывают трубку. Трубка заполнена сухим кварцевым песком 6. Плав­кая вставка выполнена из одной или нескольких медных ленточек толщиной 0,15-0,35 мм и шириной до 4 мм. На вставке сделаны про­рези 7, уменьшающие сечение вставки в 2 раза. Для снижения темпе­ратуры плавления вставки используется металлургический эффект -на полоски меди напаяны шарики олова 8, температура плавления в этом случае не превышает 475 °С, дуга возникает в нескольких па­раллельных каналах (в соответствии с числом вставок); это обеспечи­вает наименьшее количество паров металла в канале между зернами кварца и наилучшие условия гашения дуги в узкой щели. Насыпные


предохранители, так же как предохранители серии ПР2, обладают то-коограничивающим свойством.

Для уменьшения возникающих перенапряжений плавкая вставка имеет по длине прорези, причем их количество зависит от номиналь­ного напряжения предохранителя (из расчета 100-150 В на участок между прорезями). Так как вставка сгорает в узких местах, то длинная дуга оказывается разделенной на ряд коротких дуг, суммарное на­пряжение, которых не превышает суммы катодных и анодных паде­ний напряжения [7].

Наполнителем в предохранителях серии ПН является чистый кварцевый песок (99 % SiO2). Вместо кварца может быть применен мел (СаСО3), иногда его смешивают с асбестовым волокном. При возникновении дуги мел разлагается с выделением углекислого газа СО2 и СаО - тугоплавкого материала. Реакция происходит с погла-щением энергии, что способствует гашению дуги.

Предельный отключаемый ток предохранителей серии ПН2 дос­тигает 50 кА.

Насыпные предохранители серии НПН имеют неразборный стеклянный патрон без контактных ножей и рассчитаны на токи до 60 А.

Взамен предохранителей ПН2 разработаны предохранители серии ПП-31 с алюминиевыми вставками на номинальные токи 63-1000 А и имеющие предельный ток отключения до 100 кА при напряжении 660 В.

Предохранители серии ПП-17 изготавливаются на токи 500-1000 А, напряжение переменного тока 380 В и постоянного тока 220 В. Предель­ная отключающая способность предохранителей ПП-17 100-120 кА. Предохранитель состоит из плавкого элемента, помещенного в кера­мический корпус, заполненный кварцевым песком, указателя сраба­тывания и свободного контакта. При расплавлении плавкого элемента предохранителя перегорает плавкий элемент указателя срабатывания, освобождая введенный при сборке указателя боек, который переклю­чает свободный контакт, и замыкается цепь сигнализации срабатыва­ния предохранителя.

Для защиты полупроводниковых приборов разработаны быст­родействующие предохранители серии ПП-41, ПП-57, ПП-59, ПП-71. Эти предохранители выполняются с плавкими вставками из серебря­ной фольги в закрытых патронах с засыпкой кварцевым песком. Они рассчитаны на установку в цепях переменного тока напряжением


380-1250 В и постоянного тока 230-1050 В. Электротехническая промышленность изготавливает предохранители на номинальные то­ки 100-2000 А, предельные токи отключения до 200 кА. Эти предо­хранители обладают эффективным токоограничивающим действием.

В схемах управления станков, механизмов, машин, а также в системах электроснабжения жилых и общественных зданий широко применяются пробочные плавкие предохранители серии ПРС. Номи­нальный ток корпуса 6; 25; 63; 100 А.

Электротепловые реле

Для защиты электрических двигателей и другого электрообору­дования от длительных перегрузок широко распространены тепловые реле с биметаллическими элементами. Биметаллический элемент со­стоит из двух пластин с различным коэффициентом линейного рас­ширения (а) при нагревании. Пластины жестко скреплены друг с другом за счет проката в горячем состоянии, либо контактной свар­кой. В качестве материалов для термобиметаллических элементов применяются такие материалы, как инвар, имеющий малое значение а, и хромоникилевая (нержавеющая) сталь, имеющая большое значе­ние а.

Если биметаллический элемент закрепить с одной стороны не­подвижно и нагреть, то произойдет изгибание пластины в сторону ма­териала с меньшим коэффициентом линейного расширения а. Изги­баясь, биметаллическая пластина действует на защелку и при этом происходит переключение контактов реле. Тепловые реле могут иметь размыкающий или размыкающий и замыкающий контакты. В схемах управления и защиты электродвигателей используются за­мыкающие контакты реле, действующие на срабатывание сигнально­го устройства, или размыкающие контакты реле - на отключение электродвигателя от сети.

Нагрев биметаллического элемента может производиться за счет тепла, выделяемого прохождением тока нагрузки в самой пластине или в специальном нагревательном элементе. Из-за инерционности теплового процесса тепловые реле, имеющие биметаллический эле­мент, непригодны для защиты цепей от токов коротких замыканий (КЗ). Нагревательные элементы в данном случае могут перегореть до срабатывания реле. Поэтому защита с помощью тепловых реле долж­на быть дополнена плавкими предохранителями или автоматически­ми выключателями.


Выпускаются тепловые реле однополюсные серии ТРП, двухпо­люсные - ТРН и трехполюсные серии РТЛ. В схемах электротехниче­ских устройств тепловые реле устанавливаются индивидуально или в комплекте с магнитными пускателями.

Электротепловые реле серии РТЛ (рис. 3.5) имеют трехполюс-ную конструкцию, т. е. тепловые биметаллические элементы установ­лены в трех фазах. Реле имеет следующие основные детали: термоби-металличесие элементы 1, установленные в каждой фазе, пружина-защелка 2 контактной системы 6 и 7, устройство самовозврата кон­тактов 3, кнопка ручного возврата подвижных контактов 4, регулятор уставок тока, неподвижные контакты 6 и подвижные контакты 7. Включение реле в исходное положение осуществляется кнопкой руч­ного возврата контактов 4.

Рис. 3.5. Электротепловое реле серии РТЛ

При перегрузке, когда ток электродвигателя увеличивается в 1,2-1,3 раза тока номинального уставки реле Iном.уст, термобиметал­лические элементы 1 нагреваются и, изгибаясь, воздействуют на пру­жину - защелку 2, которая освобождает устройство самовозврата кон­тактов 3. Происходит переключение контактов 6 и 7.

Электротепловые реле серии РТЛ выпускаются на различные токи уставки срабатывания в диапазоне от 0,1 до 200 А.


Устанавливаются в комплекте с магнитными пускателями серии ПМЛ и имеют выводы для присоединения к пускателю, обозначен­ные - 1Л1, 3Л2, 5Л3 и клеммные зажимы - 2С1, 4С2, 6С3 для под­ключения асинхронных электродвигателей.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...