Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Проектирование конической зубчатой передачи




Выбор материала зубчатых колес и режима термической обработки

Выбираем для колеса и шестерни марку стали 40Х [3; c.25].

Термообработка - улучшение до твердости:

для колеса НВ235…262;

для шестерни НВ269…302.

Расчет допустимых напряжений для материала шестерни и колеса

Мощность на ведущем валу Р1 определяется по формуле:

Р1 = Рдв ×hмф × hппк; (4.1)

Р1 = 0,25 × 0,98 × 0,99 = 0,024 кВт.

Мощность на ведомом валу Р2 определяется по формуле:

Р2 = Р1 ×hкзп (4.2)

Р2 = 0,024 × 0,96 = 0,023 кВт.

Угловая скорость ведомого вала w2 определяется по формуле:

w2 = = = 1,67 с - 1.

Крутящий момент на ведущем валу определяется по формуле:

T1 = ; (4.3)

T1 = = 8 Нм.

Крутящий момент на ведомом валу определяется по формуле:

T2 = ; (4.4)

T2 = = 29,92 Нм.

Режим работы - передача реверсивная, нагрузка постоянная. Продолжительность включения - 8 часов 300 дней в году (эти данные принимаем самостоятельно).

Расчет допускаемых напряжений

Расчет допускаемых контактных напряжений

Для шестерни:

[s]Н1 = [s]НО1 × КHL1 (4.5)

Для колеса:

[s]Н2 = [s]НО2 × КHL2 (4.6)

Т.к.. материал для шестерни и колеса одинаковый (сталь 40Н), то предельные значения допускаемых контактных напряжений одинаковы.

[s]НО1, [s]НО2 (по таблице 2.2 [3;c.31] составляют [s]НО = 1,8 НВ + 67. В качестве НВ принимаем НВср для шестерни (из диапазона 269-302) НВср=285,5 МПа.

[s]НО1 = 1,8×258,5 + 67 = 581 МПа.

Для колеса (из диапазона 235 - 262)НВср = 248,5 МПа.

[s]НО2 = 1,8×258,5 + 67 = 581 МПа.

Коэффициенты долговечности по контактным напряжениям для шестерни и колеса соответственно:

КHL1 = ; (4.7)

КHL2 = ; (4.8).

Базовое число циклов перемены напряжений рисунок 2.3 в [3;c.32]:

для шестерни NHO1 = 16×106 циклов;

для колеса NHO2 = 12,5×106 циклов.

Число циклов нагружения контактными нагрузками:

- для шестерни NH1 = Lh×h1×60Kрев;

для колеса NH2 = Lh×h2×60Kрев.

Моторесурс для шестерни и колеса:

Lh = Lгод × 365 × Кгод × 24 × Ксут × ПВ,

где Lгод = 5 - количество лет работы привода;

Кгод= (количество рабочих дней - коэффициент годового использования)/365;

Кгод = = 0,822.

Ксут= (число работыв сутки - коэффициент суточного использования)/24;

Ксут = = 0,667.

ПВ= (Число минут работы в час- коэффициент продолжительности в течении часа)/60;

ПВ = = 0,833.

Lh = 5×365×0,822×24×0,677×0,833× = 2004 час.

Для реверсивного режима работы (стол должен иметь возможность как подъема, так и опускания) Крев = 0,5 - коэффициент реверсивности [3;c.33].

NH1 = 2004×64×60×1,5 = 23,44×106 циклов;

NH2 = 2004×16×60×1,5 = 9,6×106 циклов;

КHL1 = = 1;

КHL2 = = 1,045.

Тогда до пускаемые контактные напряжения для материала шестерни и колеса соответственно:

[s]Н1 = 581×1 = 581 МПа;

[s]Н2 = 514×1,04 = 537 МПа.

Расчет допускаемых напряжений изгиба

Предельные значения допускаемых напряжений на изгиб найдем по формулам:

- для шестерни:

[s]F1 = [s]НО1 × КFL1× КFC;

- для колеса:

[s]F2 = [s]НО2 × КFL2× КFC,

где КFL1, КFL2 - коэффициенты долговечности по изгибным напряжениям.

[s]F01 = 1,03×НВср = 1,03×285,5 = 294 МПа;

[s]F02 = 1,03×НВср = 1,03×248,5 = 256 МПа.

Коэффициент долговечности определим по формуле:

КFL1 = , (4.6)

где NF0 = 4×106 циклов - базовое число циклов при достаточно - изгибном загружении.

Количество циклов нагружения изгибными нагрузками шестерни и колеса соответственно:

NF1 = NH1 =13,44×106 циклов;

NF2 = NH2 =3,6×106 циклов.

КFL1 = = 0,886;

КFL2 = = 0,915.

С учетом коэффициента реверсивности КFC = 0,8;

[s]F1 = 294×1×0,8 = 235 МПа;

[s]F2 = 256×1,01×0,8 = 207 МПа.

При НВ<350 (улучшение) принимаем КFL1 = 1 (по условию 1£ КFL£2,08 [3;c.34]).

Проектирование конической зубчатой передачи

Проектировочный расчет конической зубчатой передачи начинают с определения внешнего делительного диаметра колеса:

dе2 ³ 1,65×104× ;

где u = 1,4 - передаточное число;

КHb- коэффициент концентрации нагрузки по контактным напряжениям (таблица п4.1)[3;c.45].

При значении коэффициента ширины зубчатого венца по делительному диаметру yd = 0,166 = = 0,285 и консольном расположении шестерни относительно опор (опоры - роликоподшибники, НВ<350):

КHb = = 1,12;

VH - коэффициент нагрузочной способности конической передачи по контактным напряжениям (прямозубая передача).

d е2³ 1,65×104× = 135 мм.

Углы делительных конусов:

для колеса d2 = arctg u = arctg 4 = 7;

для шестерни d1 = 90 - d2 = 83о.

Конусное расстояние определим по формуле:

Rе = 74 мм.

b =0,285×Rc = 30 мм - ширина колес.

Внешний торцевой модуль определим из соотношения:

,

где vF -коэффициент нагрузочной способности,

КFb - коэффициент неравномерности изгибных напряжений по длине зуба, принимаем по таблице 4.6 [3;c.53].

При консольном расположении шестерни (опоры - роликоподшипники НВ<350);

ja = 0612 КFb = ;

vF = 0,85 - для прямозубой передачи.

.

Расчет числа зубьев:

-для колеса z2 = = = 86,7 = 87;

- для шестерни z1 = = = 22.

Фактическое передаточное число определим по формуле:

uф = 3,95 (4.9)

Отклонение от заданного u:

% = 125%.

Отклонение от заданного не должно превышать 4%; 1,25<4%.

Окончательные делительные диаметры колес:

dе1 = me z1 = 1,5× 22 = 35;

dе2 = me z2 = 1,5 × 87 = 130.

dm1 =; Внешние диаметры колес;

daе2= dе2 +2(1+ Xе2) me cosδ2;

daе1 = dе1+2(1+Xе1) me cosδ1,

где Xе1 - коэффициент смещения инструмента при нарезании конической шестерни, таблица 5.2 [3;c.62].

Xе1 = 0,41; Xе2 = -Xе1 = - 0,41;

daе1= 35 +2(1+ 0,41)×1,5×cos15,480 =38 мм;

daе2= dе2 +2(1+ Xе2) me cosδ2 =135 мм.

Силы в зацеплении

Средние делительные диаметры определим по формулам:

dm1 = 0,875de1 = 0,857·35 = 30 мм;

dm2 = 0,875de2 = 0,857·130 = 112 мм.

Тангенциальные силы на шестерне найдем по формуле:

Ft1 = Н;

Ft1 = Ft2 = 533 Н.

Осевая сила на шестерне находится по формуле:

Fа1 = Ft1 · tgα · sinδ1 = 53 Н, Fа1 = Fr2 = 53 Н.

Радиальная сила на шестерне и осевая на колесе определим по формуле:

Fr1 = Fа1 · tgα · cosδ1 = 186 Н.

Степень точности определим через окружную скорость:

V = 0,5ω2 dm2 = 0,57×1,66·0,146 = 0,12 м/с.

По таблице 4.4 назначаем 9ю степень точности [3;c.50].

Проверка зубьев по напряжениям изгиба

Расчетное напряжение изгиба в зубьях колеса находится по формуле:

sF2 = £ [s]F2,

где =1,39 [3;c.54];

- коэффициент динамичности по изгибным напряжениям (при 9й степени точности, НВ<350 и окружной скорости 0,12 м/с =1,13 таблица 4.7 [3;c.54]);

= 3,67 – коэффициент формы зуба колеса, таблица 4.8 [3;c.54]).

При эквивалентном числе зубьев:

ZV2 = ; Xe2 = -0,41.

sF2 = = 57×106 Па = 57МПа £ [s]F2 = 207 МПа.

Расчетное изгибное напряжение в зубьях шестерни найдем по формуле:

sF1 = £ [s]F1;

При ZV1 = ; Xe1 = 0,41 по таблице 4.8 принимаем = 3,49;

sF1 = = 80МПа £ [s]F1.

Проверка зубьев колеса по контактным напряжениям

Расчетное контактное напряжение в зубьях колеса:

;

где =1,195 [3;c.55];

- коэффициент динамичности нагрузки по контактным напряжениям (при 9й степени точности, НВ<350 и окружной скорости 0,12 м/с =1,05 таблица 4.9 [3;c.55]);

VH = 0,85; T2 = 30 Нм; de2 = 0,135;

= = 0,7 – удовлетворяет условию для нормальной работы передачи. Точность по контактным напряжениям обеспечена.

 

Проектирование редуктора

Ориентировочный расчет ведомого вала

Диаметр вала определим по формуле:

,

где Т2 = 30 Нм.

1,5·10-2 = 15 мм.

dБП ³ dп + 3,2r = 22 мм,

где r – радиус гантели.

Предварительный расчет тихоходных валов

Бурт под колесо – 23 мм;

Шейка под зубчатое колесо – 18 мм;

Выходной конец вала – 10 мм.

Определение размеров зубчатых колес.

dСТ ³ 1,6dв = 54 мм.

Толщина обода: δа = (3…4,0)min = 5 мм.

Толщина диска: С = (0,1…0,17)Re = 7 мм.

Внутренний диаметр обода: D0» doe – 2b = 110 мм.

Диаметр центровой окружности: Dотв = 0,5(D0 + dст) = 80 мм.

Толщина стенки корпуса» 6мм.


Расчет валов на прочность

Расчет винта на совместное действие изгиба и кручения

Вращающий момент на быстроходном валу редуктора Т1 = 103 Нм.

Ft1 = Ft2 = 533 Н; Fа1 = Fr2 = 53 Н; Fr1 = Fа2 = 186 Н.

Допускаемое напряжение изгиба при систематическом цикле напряжений определяется по формуле:

[sи]-1 = {s-1/([h]×Ks)}Kри,

где s-1 – предел выносливости;

Ks = 1,2 - эффективный коэффициент запаса прочности для опасного сечения;

Kри = 1 – коэффициент ретиманагрузки при расчете на изгиб.

s-1 = 0,35 · sв + 70 [5;c.9];

t-1 = 0,25 × sв;

s-1 = 0,35 · 850 + 70 = 367;

t-1 = 0,25 × 550 = 212;

[sи]-1 = {367/3·2}1 = 100 МПа.

Быстроходный вал

Составляем расчетную схему вала. Строим эпюры изгибающих моментов в вертикальной плоскости xoy.

Ft1 = 533 Н; Fа1 = 53 Н; Fr1 = 186 Н;

SM(В) = - RCX × 0,02 - Ft1 × 0,015 = 0;

RCX = - 399 Н (меняем знак);

МизгХ(С) = RCX·0 = 0;

МизХ(В) = RCX·0,022 = 8,78 Нм;

RВX = 896Н.

Проверяем: RВX - - RCX = 0.

Рассмотрим zoy:

SM(C) = - RBz × 0,022 – Fr × 0,037 + Fa – 0,02 = 0;

RВz = 363Н;

SM(B) = - RCz × 0,022 – Fr × 0,015 + Fa × 0,022 = 0;

RCz = 80 Н.

Миз(C) = 0; Миз(В) = RCz·0,022 = 24 Нм;

Миз(А) = RА·0,021- RВz·0,015+ RСz·0,037 =

= 53·0,021- 363·0,015 + 80·0,037 = -1,5нм;

Проверяем: Fr - RВz - RCz = 0; Т1 = 8 Нм.

Построим эпюры крутящих и изгибающих моментов (рисунок6.1).

Вычислим наибольшее напряжение изгиба и кручения для опасного сечения:

Для шестерни

Рисунок 6.1

 

 

Для тихоходного вала

Рисунок 6.2

 

 

Суммарный изгибающий момент:

Миз = = = 9,2 НМ;

;

.

Определим эквивалентные напряжения по энергетической теории прочности:

sэкв = ;

sэкв = = 37,5 МПа < 100МПа.

Прочность в сечении обеспечена.

Тихоходный вал

Ft2 = 533 Н; Fа2 = 186 Н; Fr1 = 53 Н;

Raz = Rcz – Fr = 0;

M(А) = - Fr × 0,047 – Fa × 0,04 + Rcz × 0,07 = 0;

RCz = 142 Н;

M(С) = Fr × 0,022 – Fa × 0,04 - RАz × 0,07 = 0;

RАz = 71,4 Н;

Миз(А) = Миз(С) = 0;

Миз(С) = - RАz·0,047= - 71,4·0,047 = -3,384 Нм.

В плоскости zox:

МX(С) = RАX·0,07 + Ft2 ·0,02 = 0;

RАX = 1674 Н;

M(B) = Ra X× 0,047 = 167 × 0,048 = 8 Нм;

M(А) = - Ft× 0,047 = RC X× 0,07 = 0;

RCX = 357 Н.

Встроим опору крутящих моментов Т2 =30 Нм от середины ступицы зубчатого колеса.

Вычислим наибольшее напряжение изгиба и кручения для опасных сечений. Сечение В ослаблено шпоночным пазом.

Определим геометрические характеристики сечения:

- осевой момент сопротивления Wи = 0,1d3 - = 2×10-6 м3;

- полярный момент сопротивления Wк = 0,2d3 - = 4,3×10-6 м3;

МизS = = 12,8 Нм;

;

sэкв = = 14 МПа < 100МПа = [s]-1.

Уточненный расчет валов на усталостную прочность

Определим запас усталостной прочности ведомого вала в сечении В. В этом сечении имеет место концентрация напряжений.

Момент в сечении В:

Миз = = 12,8 Нм;

По таблице 2 [4;c.20]:

Wи = 2×10-6 м3;

Wи = 4,3×10-6 м3.

Определим нормальные напряжения:

sи = sа = Mиз / Wи = 6,13 МПа.

Напряжение кручения:

tк = Т2 / Wк = 7,5 МПа.

При отнулевом цикле амплитуда изменения касательных напряжений:

tа = tm = tк/2 = 4 МПа.

sВ = 700 МПа.

Кs/Еs = 2,8.

Для касательных напряжений:

ys = 0,2; yt = 0,1 (таблица 3 {4;c.21]).

Коэффициент запаса прочности найдем по формулам:

ns = s-1/(Ks · sa / Es + ys×sm);

nt = t-1/(Kt · ta / Et + yt×tm);

 

sm = = = 0,71 МПа.

ns = = 21,2;

nt = = 9,37.

Коэффициент запаса прочности определим по формуле:

n = = = 8,5

8,5 > 2, следовательно усталостная прочность вала в сечении В обеспечена.

 

Подбор подшипников

Проверяем пригодность роликоподшипников конических однорядных по ГОСТ 333-79, условное обозначение – 7202.

Проверим пригодность подшипника по [8;c.103]:

Fa = 186 Н; КБ = 1,3; КТ = 1.

RCХ = 142 Н; RCy = 357 Н;

RХА = 72 Н; RYA = 167 Н.

Rrc = = 384 Н;

RrА = = 182 Н;

Rr1 = 384 Н;

Rr2 = 182 Н;

RS1 = 0,83·0,45×384 = 143 Н;

RS2 = 0,83·0,45×182 = 68 Н;

Rа1 = RS1; Rа2 = Rа1 + Fa = 143 + 186 = 329 Н;

= = 0,37 < ;

= = 2,1 < ; x = 0,4; y = 1,6;

Re1 = V·x×3·Rr1×Кб·Кт = 1×1×384×1,3×1 = 500 Н;

Re2 = (V·x×3·Rr1 + y· Rа2)Кб·Кт = (1×0,4 ×182 + 1,6×329) ×1,3 = 778 Н.

Расчетная долговечность опоры:

Lioah = Q23 = 5400 часов.

Подшипники пригодны для заданного режима работы.

Смазка подшипников, винта и др. трущихся поверхностей осуществляется пластичным смазочным материалом типа солидол жировой, с помощью пресс – масленки.

 


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...