Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Краткий очерк истории развития систем автоматического управления




Министерство высшего и специального образования РФ

Тольяттинский государственный университет

Кафедра «химии, химических процессов и химических технологий»

Курс Лекций

По дисциплине «Системы управления химико-технологическими и пищевыми процессами»

(СУХТП)

Часть 2. Введение в системы управления химико-технологическими и пищевыми процессами

Составитель:

Д.х.н., профессор В.П. Щукин

 

 

Тольятти 2016

 

Содержание

(Содержанием являются выписанные в порядке появления рассматриваемые главы, разделы, параграфы- вписать Перечень рекомендуемой литературы приведен в 1-й части.)

 

 

Введение.

ЗНАЧЕНИЕ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДЛЯ РАЗВИТИЯ ХИМИЧЕСКОЙ И ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ НА СОВРЕМЕННОМ ЭТАПЕ

Наука об автоматических системах управления химико-технологическими процессами изучает законы их построения и действия, методы исследования и настройки.

Технический уровень химической промышленности на современном этапе ее развития во многом определяется уровнем управления. Без наличия необходимых средств автоматической диагностики химико-технологического процесса и автоматического управления им в принципе невозможен технический прогресс в химической промышленности. Современное химическое или нефтехимическое производство является высокоавтоматизированным производством. Информационная мощность крупного химического предприятия, оцениваемая количеством измеряемых параметров, составляет более 1500. Автоматическое управление химическим производством позволяет значительно увеличить производительность труда и, что имеет особое значение для химической промышленности, повышает социальную эффективность труда, т. е. облегчается труд обслуживающего персонала, улучшаются санитарно-гигиенические условия их работы, повышается культурный и профессиональный уровень специалистов. На химических предприятиях появились работники, владеющие компьютерами, специалисты по информационным технологиям. Автоматическое управление химическим производством позволяет не только улучшить качество производимой продукции, снижая ее себестоимость, но и уменьшить отрицательное воздействие химического предприятия на окружающую среду.

Высоко автоматизированное производство обладает скрытой способностью постоянного обновления и модернизации на основах принципов научной организации технологических схем, широко используемых в настоящее время в промышленности.

Таким образом, понятия технический прогресс и уровень автоматического управления в химической промышленности неотделимы.

Возможности автоматического управления (с использованием микропроцессорной техники) в химической технологии следующие:

• автоматический пуск и останов химического производства;

• автоматический контроль технологических параметров;

• автоматическое прогнозирование ведения технологического процесса;

• поддержание заданных (оптимальных) технологических режимов;

• повышение качества производимой продукции;

• повышение производительности технологического оборудования и увеличение объема производимой продукции;

• снижение затрат сырья, материалов и энергии на производство единицы продукции;

• безопасное ведение химико-технологического процесса (уменьшение вероятности нарушения технологического режима, приводящее к нанесению вреда обслуживающему персоналу, оборудованию, окружающей среде);

• увеличение надежности химико-технологических процессов и в целом химико-технологической системы (сокращение простоев оборудования из-за неполадок и увеличение межремонтных сроков работы технологического оборудования);

• предупреждение загрязнения окружающей среды промышленными отходами и стоками.

• накопление статистической информации с целью ее испольбзования для научного анализа по дальнейшей оптимизации процессов.

Лекция 1.

 

КРАТКИЙ ОЧЕРК ИСТОРИИ РАЗВИТИЯ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

В истории развития САУ можно условно выделить четыре исторических периода:

• греческая и арабская цивилизации (III век до н. э.—1200 год н. э.);

• промышленная революция в Европе (с третьей четверти XVIII века, хотя корни ее прослеживаются и в начале XVII века);

• начало массовых коммуникаций (1910—1945);

• век освоения космоса, компьютерный век (с 1957 г. по наши дни).

Простейшие автоматические регуляторы и устройства применялись еще до новой эры. Известно, что системы регулирования с обратной связью применялись в III веке до нашей эры, например, для автоматического регулирования уровня воды в водяных часах с помощью поплавкового регулятора, чтобы повысить точность их показаний. Водяные часы представляют собой два резервуара. В пер вом резервуаре водяных часов уровень воды должен быть постоянным, постоянство его и поддерживает поплавковой регулятор. Этот постоянный уровень обеспечивает постоянство расхода воды во второй резервуар через трубу, расположенную в днище первого резервуара. Уровень воды во втором резервуаре, таким образом, зависел от времени истечения воды из первого резервуара. Так был реализован принцип регулирования с обратной связью. Поплавковые регуляторы использовались для регулирования уровня масла в лампах для освещения, для дозированного разлива вина.

В средние века применялись центробежные регуляторы хода водяных мукомольных мельниц. В 1657 г. X. Гюйгенс предложил маятниковый регулятор хода для механических часов. В это же время были изобретены регуляторы температуры (для поддержания температуры при плавке металлов в печах; в инкубаторах для выведения цыплят — 1624 г.). В конце XVIII века в Америке регуляторы температуры применяются в химических печах, в производстве стали и фарфора.

Появление паровых машин приводит к изобретению регуляторов давления. В 1681 г. изобретен первый предохранительный клапан для сброса давления пара. К первым промышленным регуляторам относят автоматический поплавковый регулятор уровня в паровом котле паровой машины, построенной в 1765 г. И.И. Ползуновым, и центробежный регулятор скорости для стабилизации угловой скорости вращения вала паровой машины, сконструированный Д. Уаттом (1788).

Вновь пробуждается интерес к регуляторам уровня. Слесарь Томас Креппер за изобретения сливных бачков с регуляторами уровня в 1775 г. возводится в рыцарское достоинство английской королевой Викторией.

Большой вклад в разработку и создание регуляторов для различных целей внесли русские ученые И.А. Вышнеградский, Н.Е. Жуковский, A.M. Ляпунов и др.

Исследования И.А. Вышнеградского и Д. К. Масквелла в области устойчивости и качества процессов регулирования положили начало развитию теории автоматического регулирования.

Отправной точкой предыстории теории автоматического управления можно считать 1868 г., когда Д.К. Максвелл выполнил первый строгий математический анализ устойчивости системы управления с обратной связью. Он исследовал влияние параметров системы на устойчивость и показал, что система устойчива, если корни характеристического уравнения имеют отрицательные действительные значения. Независимо от Д.К. Максвелла в 1877 г. И.А. Вышнеградский исследовал устойчивость регуляторов. В 1893 г. А. Б. Стодола впервые вводит понятие постоянной времени системы и предлагает оценивать устойчивость системы по устойчивости характеристического уравнения. В 1892 г. A.M. Ляпунов опубликовал в России свое знаменитое сочинение «Общая задача об устойчивости движения». На Западе теория устойчивости по Ляпунову становится известной лишь в 1960 г. и получает свое признание. В 1892—1898 гг. английский инженер О. Хевисайд исследует переходные характеристики систем, вводя понятие передаточной функции.

В 1909 г. в России издается первый русский учебник по теории регулирования Н.Е. Жуковского «Теория регулирования хода машин».

В 1932 г. американский ученый X. Найквист предложил для оценки устойчивости систем частотный критерий устойчивости. В 1940 г. X. Боде исследовал устойчивость замкнутых систем, используя такие понятия, как коэффициент усиления и запас устойчивости по фазе. Н. Минорский (1922), рассматривая нелинейные эффекты в замкнутых системах, впервые использует пропорционально-интегрально-дифференциальный регулятор. X. Хазен (1934) опубликовал теорию сервомеханизмов (исполнительных механизмов).

Автоматическое регулирование и управление перестает быть скорее искусством и становится наукой с появлением электронной вычислительной техники.

Первая электронная вычислительная машина (ЭВМ) была создана в 1945 г. в США под руководством американских ученых Дж.В. Моучли и Д.П. Эккерта и предназначалась для расчета баллистических таблиц (машина была построена по заказу артиллерийского управления). ЭВМ содержала 18 тысяч электронных ламп и потребляла 150 кВт. Быстродействующая электронная счетная машина (БЭСМ) была сконструирована в СССР в начале 50-х годов прошлого века коллективом ученых, во главе которых стоял академик С.А. Лебедев. Оперативная память машины равнялась 512 кбт., но именно на ней рассчитывалась орбита полета первого спутника и полет Ю.А. Гагарина

В 1960 г. разработано второе поколение компьютеров с использованием полупроводниковой технологии. С 1965 г. начинает развиваться миникомпьютерная технология, а в 1969 г. В. Хофф изобрел микропроцессор. В 1970—1980-е годы получает развитие идея об использовании цифровых компьютеров для управления в промышленности, особенно химической. К 1983 г. появляются первые персональные компьютеры. Проектирование современных систем управления при наличии прикладных пакетов компьютерных программ, включая такие, как ORACLS, Program CC, Control-C, PC-Matlab, MATRIXX, Easy5, SIMNON и др., становится доступным для рядового инженера.

Американский ученый Норберт Винер (1894—1964) был одним из создателей кибернетики (от греч. kibernos — рулевой, кормчий) — науки об общих законах управления. Кибернетика стала теоретической базой создания и внедрения автоматизированных систем управления (АСУ).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...