Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Геометрические и физические приложения




Двойной интеграл

 

Рассмотрим в плоскости О ху замкнутую область D, ограниченную линией L. Разобьем эту область какими-нибудь линиями на п частей , а соответствующие наибольшие расстояния между точками в каждой из этих частей обозначим d 1, d 2,..., dn. Выберем в каждой части точку Рi.

Пусть в области D задана функция z = f(x, y). Обозначим через f (P 1), f (P 2),…, f (Pn) значения этой функции в выбранных точках и составим сумму произведений вида f (PiSi:

, (1)

называемую интегральной суммой для функции f(x, y) в области D.

Если существует один и тот же предел интегральных сумм (1) при и , не зависящий ни от способа разбиения области D на части, ни от выбора точек Pi в них, то он называется двойным интегралом от функции f(x, y) по области D и обозначается

. (2)

 

Вычисление двойного интеграла по области D, ограниченной линиями x = a, x = b (a < b), где φ 1(х) и φ 2(х) непрерывны на [ a, b ] (рис. 1) сводится к последовательному вычислению двух определенных интегралов, или так называемого двукратного интеграла:

Рис. 1

= (3)

 

Тройной интеграл

 

Понятие тройного интеграла вводится по аналогии с двойным интегралом.

Пусть в пространстве задана некоторая область V, ограниченная замкнутой поверхностью S. Зададим в этой замкнутой области непрерывную функцию f(x, y, z). Затем разобьем область V на произвольные части Δ vi, считая объем каждой части равным Δ vi, и составим интегральную сумму вида

 

, (4)

Предел при интегральных сумм (11), не зависящий от способа разбиения области V и выбора точек Pi в каждой подобласти этой области, называется тройным интегралом от функции f(x, y, z) по области V:

 

. (5)

Тройной интеграл от функции f(x,y,z) по области V равен трехкратному интегралу по той же области:

. (6)

 

Кратные интегралы в криволинейных координатах

 

Введем на плоскости криволинейные координаты, называемые полярными. Выберем точку О (полюс) и выходящий из нее луч (полярную ось).

 

Рис. 2 Рис. 3

 

Координатами точки М (рис. 2) будут длина отрезка МО – полярный радиус ρ и угол φ между МО и полярной осью: М( ρ,φ ). Отметим, что для всех точек плоскости, кроме полюса, ρ > 0, а полярный угол φ будем считать положительным при измерении его в направлении против часовой стрелки и отрицательным – при измерении в противоположном направлении.

Связь между полярными и декартовыми координатами точки М можно задать, если совместить начало декартовой системы координат с полюсом, а положительную полуось Ох – с полярной осью (рис. 3). Тогда x=ρ cosφ, у =ρsinφ. Отсюда , tg .

Зададим в области D, ограниченной кривыми ρ=Φ 1(φ) и ρ=Φ 2(φ), где φ 1 < φ < φ 2, непрерывную функцию z = f(φ, ρ) (рис. 4).

Рис. 4

Тогда

(7)

В трехмерном пространстве вводятся цилиндрические и сферические координаты.

 

Цилиндрические координаты точки Р(ρ,φ,z) – это полярные координаты ρ, φ проекции этой точки на плоскость О ху и аппликата данной точки z (рис.5).

 

 

Рис.5 Рис.6

Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом:

 

x = ρ cos φ, y = ρ sin φ, z = z. (8)

 

В сферических координатах положение точки в пространстве определяется линейной координатой r – расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ – полярным углом между положительной полуосью О х и проекцией точки на плоскость О ху, и θ – углом между положительной полуосью оси О z и отрезком OP (рис.6). При этом

Зададим формулы перехода от сферических координат к декартовым:

 

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. (9)

Тогда формулы перехода к цилиндрическим или сферическим координатам в тройном интеграле будут выглядеть так:

, (10)

где F 1 и F 2 – функции, полученные при подстановке в функцию f вместо x, y, z их выражений через цилиндрические (8) или сферические (9) координаты.

Геометрические и физические приложения

Кратных интегралов

 

1) Площадь плоской области S:

(11)

Пример 1.

Найти площадь фигуры D, ограниченной линиями

у = 2, у = 5.

Решение.

Эту площадь удобно вычислять, считая у внешней переменной. Тогда границы области задаются уравнениями и

где вычисляется с помощью интегрирования по частям:

Следовательно,

 

2) Объем цилиндроида, то есть тела, ограниченного частью поверхности S: z = f(x,y), ограниченной контуром L, проекцией D этой поверхности на плоскость О ху и отрезками, параллельными оси О z и соединяющими каждую точку контура L с соответствующей точкой плоскости О ху:

(12)

3) Площадь части криволинейной поверхности S, заданной уравнением z = f(x,y), ограниченной контуром L:

(13)

где D – проекция S на плоскость Оху.

4) Момент инерции относительно начала координат О материальной плоской фигуры D:

(14)

Пример 2.

Найти момент инерции однородной круглой пластинки

(x – a)2 + (y – b)2 < 4 b 2 относительно начала координат.

Решение.

В силу однородности пластинки положим ее плотность γ (х, у) = 1.

 

Центр круга расположен в точке C (a, b), а его радиус равен 2 b.

Уравнения границ пластинки имеют вид

Вычислим каждый из полученных интегралов отдельно.

Для вычисления интеграла I 1 сделаем замену:

при x = a – 2 b при x = a + 2 b

Для вычисления интеграла I 2 преобразуем подынтегральную функцию по формуле разности кубов:

Тогда

Следовательно,

 

Моменты инерции фигуры D относительно осей Ох и Оу:

(15)

5) Масса плоской фигуры D переменной поверхностной плотности γ = γ (х, у):

(16)

Пример 3.

Найти массу пластинки D плотности γ = ух 3, если

Решение.

 

 

 

Координаты центра масс плоской фигуры переменной поверхностной плотности γ = γ (х, у):

(17)

Пример 4.

Найти центр тяжести однородной пластины D, ограниченной кривыми у 2 = ах и

Решение.

Так как пластина однородна, т.е. ее плотность постоянна, то можно принять ее за единицу.

 

Тогда

Найдем массу пластины, а для этого определим абсциссу точки пересечения ограничивающих ее линий:

Соответственно

6) Объем тела V:

(18)

Пример 5.

Найти объем тела V, ограниченного поверхностями

Решение.

Найдем проекцию тела на плоскость Оху (при этом заметим, что плоскость проектируется на эту плоскость в виде прямой

х = 0):

Определим абсциссу точки пересечения кривых у = х 2 и х + у = 2:

посторонний корень. Тогда, используя формулу (18), получаем:

 

7) Масса тела V плотности γ = γ (x, y, z):

(19)

8) Моменты инерции тела V относительно координатных осей и начала координат:

 

(20)

(21)

где γ (х, y, z)– плотность вещества.

Статические моменты тела относительно координатных плоскостей Oyz, Oxz, Oxy:

(22)

9) Координаты центра масс тела:

(23)

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...