Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Виды связи влаги в материале




КОНСПЕКТ ЛЕКЦИЙ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ОБЕЗВОЖИВАНИЯ РАСТИТЕЛЬНЫХ ПРОДУКТОВ

Растительное сырье как объект сушки

Виды связи влаги в материале

Химическая связь

Физико-химическая связь

Механическая связь

 

Растительное сырье как объект сушки

Пищевые продукты в процессе хранения претерпевают различные микробиологические, биохимические и ферментативные изменения, которые приводят к их порче. Одним из средств подавления роста микроорганизмов и ферментативной активности является удаление влаги путем естественной или искусственной сушки.

Минимальное содержание влаги, при котором развиваются бактерии – 25-30 %, плесневые грибы – 10-15 %. При высушивании влажность чаще всего доводят до 8-20 %, т.е. до уровня, который препятствует развитию микроорганизмов.

Растительное сырье, как объект сушки, характеризуется большим количеством воды и малым содержанием сухих веществ. Основная часть воды находится в свободном виде и только около 5 % связано с клеточными коллоидами и прочно удерживается. Этим объясняется легкость высушивания плодоовощного сырья до влажности 12-14 % и затрудняет удаление остаточной влаги.

Растительное сырье имеет капиллярно-пористую структуру. Химический состав его представлен углеводами, белками, липидами. В небольших количествах содержатся биологически активные вещества, которые определяют вкус и биологическую ценность сырья: полифенолы, витамины, органические кислоты, минеральные вещества. Эти компоненты наиболее подвержены неблагоприятным изменениям при подготовке материала к сушке, а также в процессе самой сушке, что и приводит к снижению биологической ценности готового продукта.

Растительное сырье состоит из клеток. Гидрофильные вещества в клетке находятся в виде водных растворов, годрофобные – в виде эмульсий и коллоидных растворов. Вода в клетке является средой, в которой протекают все реакции. Распределена она неравномерно. Наибольшее количество воды содержится в паренхимных тканях, меньше в покровных и совсем мало - в семенах. Поэтому очищенное, подготовленное к сушке сырье содержит больше воды, чем исходное.

Большую часть сухих веществ растительного сырья составляют углеводы. Они обусловливают вкусовые качества, консистенцию, технологические особенности переработки сырья. Картофель и бобовые из углеводов содержат преимущественно крахмал, овощи и фрукты – моно- и дисахара: глюкозу, фруктозу, сахарозу. Высокое содержание моносахаров приводит при сушке к реакции меланоидинообразования и потемнению продукта. Кроме этого, высокое содержание сахаров в плодах и ягодах приводит к увеличению продолжительности процесса сушки.

Целлюлоза, гемицеллюлоза,– основные компоненты, которые образуют каркас растительной клетки, в воде не растворяются и при сушке практически не изменяются.

Пектиновые вещества – обладают способностью связывать влагу и увеличивают продолжительность сушки.

Белки при сушке денатурируют, частично гидролизуются, изменяется аминокислотный состав сушеной продукции.

Полифенольные вещества обладают высокой биологической активностью, играют роль в формировании вкуса, цвета, запаха. При технологической обработке часто являются причиной ферментативного потемнения.

Органические кислоты легко растворяются в воде и при мойке (особенно очищенного и нарезанного сырья) наблюдаются значительные их потери.

Витамины являются очень лабильными и чувствительны к изменению температуры и воздействию кислорода. Это необходимо учитывать, как при подготовке сырья к сушке, так и в процессе самой сушки.

Минеральные вещества при сушке практически все сохраняются. Но во избежание их потерь нельзя долго держать в воде очищенное и нарезанное сырье.

Таким образом, растительное сырье представляет собой сложный структурный объект сушки и обезвоживание его без потерь пищевых качеств является очень трудной задачей.

 

Виды связи влаги в материале

Влажные пищевые продукты, подвергаемые сушке, состоят из твердого сухого каркаса, воды, небольшого количества воздуха и паров. Процесс удаления влаги сопровождается изменением физико-химических показателей продукта, его теплофизических характеристик и структурно-механических свойств.

Вода – основной компонент растительных клеток, на ее долю приходится от 75 до 90 %. Различают свободную и связанную влагу.

Свободная влага – не связана с молекулами вещества, может свободно перемещаться из клетки в клетку. Она используется для питания и поддержания жизнедеятельности клетки. Это основное количество влаги.

Связанная влага – образуется в результате взаимодействия с молекулами вещества и характеризуется следующими физико-химическими свойствами:

· слабо, либо совсем не растворяет вещества, которые растворимы в свободной воде;

· имеет удельную теплоемкость ниже обычной и примерно равной теплоемкости льда;

· замерзает при низких отрицательных температурах

· обладает повышенной плотностью по сравнению со свободной влагой;

· не электропроводна, в отличие от чистой воды, так как не содержит растворимых веществ.

По своим свойствам связанная влага приближается к упругому твердому телу.

В пищевых продуктах одновременно содержатся, как связанная, так и свободная влага. Количественное соотношение между ними зависит от природы продукта. Но даже в одном продукте это соотношение может изменяться при измельчении, внесении добавок, тепловой обработке и т.д.

Удаление влаги из материала при сушке зависит от общего содержания влаги и формы связи влаги с материалом. Связь влаги с материалом характеризуется величиной свободной энергии изотермического обезвоживания – работой, необходимой для удаления 1 моля воды при постоянной температуре без изменения состава вещества при данном влагосодержании. Энергия, затраченная на удаление 1 кг/моль воды из влажного материала, определяется по уравнению (1.1):

А = -R*T*lnφ (1.1)

где: А – энергия связи влаги, Дж/моль;

R – универсальная газовая постоянная, Дж/(моль*К);

Т – температура, 0С

φ – относительная влажность воздуха.

При наличии в материале свободной влаги А=0. По мере удаления влаги прочность ее связи с материалом увеличивается и энергия связи А возрастает. Чем меньше влагосодержание материала, тем больше величина энергии связи.

Ребиндер П.А. классифицировал формы связи влаги с материалом на 3 группы: химическую, физико-химическую и механическую.

Химическая связь

Химически связанная влага подразделяется на воду, связанную в виде гидроксильных ионов и воду, заключенную в кристаллогидраты. Первая образуется в результате химического взаимодействия воды с материалом в определенном соотношении, при котором вода, как таковая, исчезает. Удалить эту влагу можно только в результате химического взаимодействия, реже при прокаливании.

Кристаллогидратная влага входит в структуру кристалла и удаление ее возможно только при прокаливании. Эта влага характеризуется количеством молекул воды, которые входят в состав кристалла.

Химическая связь самая прочная, химически связанная влага при сушке практически не удаляется и на процесс сушки не влияет. Энергия связи химической влаги самая высокая (1-100*105 Дж/моль).

 

Физико-химическая связь

Эта связь менее прочная. К этой группе относится адсорбционно и осмотически-связанная влага.

Адсорбционно-связанная влага. Эта влага удерживается у поверхности раздела коллоидных частиц с окружающей средой, благодаря молекулярно-силовому взаимодействию поверхности мицелл и гидрофильных центров белков, углеводов и липидов.

Большинство растительных продуктов – гидрофильные коллоиды с высокой молекулярной массой, высокой степенью дисперсности (размер частиц 10 -7-10 -9 м), большой поверхностью раздела, а это приводит к появлению значительной поверхностной энергии. Под действием избыточной энергии на внутренней и внешней поверхности материала происходит поглощение молекул воздуха и водяного пара из окружающего пространства. Это явление называется адсорбция. Кроме этого, на поверхности может происходить обычное растворение влаги с проникновением внутрь вещества. Это явление называется абсорбция. Или же может происходить химическое взаимодействие между влагой и поверхностными веществами. Это явление называется хемосорбция. Все эти процессы в совокупности называются сорбцией. Но так как преобладает в растительных продуктах адсорбция, то связанную таким образом влагу называют адсорбционной.

Адсорбционно-связанная влага, особенно первый слой молекул – мономолекулярный слой, является наиболее прочно связанной с веществом. Последующие слои связываются с веществом менее прочно, энергия связи уменьшается, и свойства такой влаги приближаются к свойствам обычной воды. При образовании мономолекулярного слоя происходит выделение теплоты адсорбции, это связано с уменьшением поверхностной энергии. Происходит сжатие объема (явление контракции – объем набухшего тела меньше суммы объемов материала и поглощенной влаги).

Удаление этой влаги при сушке связано с дополнительным расходом энергии на теплоту адсорбции и обязательным превращением воды в пар.

Осмотические связанная влага. Эта влага отличается от адсорбционной тем, что соединение с материалом не сопровождается выделением теплоты и связь менее прочная.

Высокая растворяющая способность воды объясняется дипольным характером ее молекул и их способности к образованию водородных связей. Свойства водных растворов зависят от сил взаимодействия между молекулами воды и растворенных веществ. Осмос – процесс диффузии растворителя через полупроницаемую мембрану под действием кинетической энергии молекул. А оболочки соединений, входящий в состав продукта, являются полупроницаемыми. Диффузия растворителя (воды) происходит из области с более высоким парциальным давлением (меньшей концентрации раствора) в сторону меньшего парциального давления (большей концентрации раствора). В результате этого процесса возникает осмотическое давление – сила, которая обусловливает диффузию молекул.

Для растворов величина осмотического давления (Росм) равна:

Росм. = С*R*T (1.2)

где: С – молярная концентрация раствора;

R – универсальная газовая постоянная, Дж/(моль*К);

Т – температура, 0С.

В результате этого вода в клетке находится в состоянии тургора (связана осмотическими силами). Так как клеточные оболочки эластичные, то они выдерживают такое напряжение. Такое состояние создает опору тканям. Поэтому качество многих плодов и овощей зависит от состояния их тургора. При избытке влаги тургор усиливается, это может привести к растрескиванию плодов и овощей. При недостатке влаги наступает плазмолиз – цитоплазматическая мембрана сморщивается и отделяется от клеточной оболочки.

Осмотически связанная влага находится внутри клеток как бы в полупроницаемом мешочке, не отличается от обычной воды, при сушке перемещается внутри материала без фазового превращения в виде жидкости. Процесс удаления этой влаги из клеток аналогичен и противоположен осмотическому ее проникновению внутрь клеток.

Энергия связи осмотически-связанной влаги определяется уравнением (1.3):

А = - R*T*ln n0 (1.3)

где: n0 – молярная доля воды в растворе (n0 = 1 – n1);

n1 – молярная доля растворенного вещества.

 

Механическая связь

Механически связанная влага самая слабая, удерживается за счет заполнения макро- и микрокапилляров. Растительные ткани имеют в зависимости от размера пор микро- или макрокапиллярное строение. Поэтому эту влагу также называют капиллярно-связанной.

Капиллярно-связанная влага обусловлена поверхностным натяжением и капиллярным давлением. Под действием давления происходит поднятие влаги в капиллярах. Высота поднятия воды зависит от радиуса капилляра: при радиусе 10 -1 см, высота подъема равна 1,5 см; при 10 -6 см – высота подъема 1,5 км. В зависимости от размера капилляры делятся микрокапилляры (радиус меньше 10 -7 м) и макрокапилляры (радиус больше 10 -7 м).

Капилляры с меньшим радиусом имеют меньшее поверхностное давление, чем более широкие, поэтому вода в них поднимается на большую высоту. В процессе сушки вода из макрокапилляров перемещается в более мелкие и оттуда испаряется. При этом уровень влаги в крупных капиллярах уменьшается, а в мелких – остается постоянным.

Вода, находящаяся в микрокапиллярах, отличается от свободной меньшей вязкостью и поверхностным натяжением и большей теплоемкостью. Температура замерзания такой влаги меньше 00С. Энергия связи в микрокапиллярах определяется по уравнению (1.4):

А = 2*σ*V0/r (1.4)

где: σ - поверхностное натяжение на границе воды с паровоздушной смесью, Н/м;

V0 – удельный объем кг/м3;

r – радиус капилляра, м

Это уравнение указывает на увеличение энергии связи с уменьшением радиуса капилляров.

Механически связанная влага практически не отличается от свойств свободной воды, ее можно рассматривать как свободную влагу, которая при сушке легко удаляется в первую очередь.

Свободная влага находится на поверхности продуктов, в крупных порах и макрокапиллярах, она легко удаляется механическим путем (отжатием, прессованием).

Контрольные вопросы

 

1 Какую основную цель преследует процесс сушки, как способ консервирования?

2 В чем особенность заключается особенность растительного сырья как объекта сушки?

3 Как изменяются сухие вещества продуктов при сушке?

4 Что такое свободная и связанная влага, чем они отличаются?

5 Какими свойствами обладает связанная влага?

6 Какие существуют формы связи влаги с материалом?

7 Что такое химически связанная влага?

8 Какими свойствами обладает адсорбционно связанная влага?

9 Чем обусловлена осмотически связанная влага?

10 Что такое капиллярно-связанная влага, как она удаляется при сушке?

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...