Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

1.8. Усилительные устройства автоматики




В автоматике широко применяются специальные устройства – усилители, способные в десятки и сотни раз увеличивать мощность сигнала, поступающего с выхода датчика. Необходимость применения усилителя объясняется тем, что выходной сигнал датчика обычно очень слаб и недостаточен для управления исполнительными механизмами [5, 6].

Основными характеристиками усилителя являются его рабочая характеристика и коэффициент усиления.

Рабочая характеристика усилителя представляет собой зависимость между выходной и входной величинами при установившемся режиме

 

.                                           (1. 9)

 

Коэффициент усиления, например, для электрических усилителей показывает во сколько раз мощность, ток или напряжение на выходе усилителя больше мощности, тока или напряжения на его входе. Различают коэффициенты усиления по мощности Кр, по току KI и по напряжению КU, которые соответственно равны:

 

;                                                (1. 10)

 

;                                                 (1. 11)

 

.                                               (1. 12)

 

Мощность, потребляемая от вспомогательного источника энергии, выходная мощность и КПД определяют энергетические свойства усилителя [3].

Усилители могут быть однокаскадными и многокаскадными, которые собирают из отдельных каскадов для получения необходимой выходной мощности сигнала.

Быстродействие усилителей оценивается по их динамическим характеристикам (временным или частотным). Усилители магнитные, электромашинные, гидравлические и пневматические имеют меньшее быстродействие, чем электронные и полупроводниковые усилители. Например, значение постоянной времени электронного усилителя равно 10-6…10-10 с, а пневматического усилителя 1…10-1 с.

В зависимости от средств передачи энергии усилители подразделяются на механические, гидравлические, пневматические, электрические, магнитные, электpoмагнитные и комбинированные. В автоматике наибольшее распространение получили рассмотренные ниже усилители, использующие в качестве внешнего источника электрическую энергию и усиливающие сигнал по напряжению или мощности либо по напряжению и мощности одновременно. При этом иногда одновременно с усилением сигнала происходит преобразование переменного тока в постоянный или наоборот.

Чаще всего применяются электрические усилители, которые можно разделить на две большие подгруппы: усилители, не содержащие подвижных частей (электронные, полупроводниковые, тиратронные, магнитные), и усилители, содержащие подвижные части (электромашинные).

К наиболее распространенным усилителям относятся усилители на электронных лампах, полупроводниковых приборах (транзисторах) и на интегральных микросхемах. В усилителях на электронных лампах основными элементами являются трехэлектронные или более сложные электронные лампы. Бурное развитие полупроводниковой техники вызвало широкое применение усилителей на полупроводниковых приборах, которые более надежны и компактны по сравнению с электронными лампами. Для построения полупроводниковых усилителей используют полупроводниковые триоды (транзисторы).

Магнитные усилители. Усилители этого вида относятся к ферромагнитным устройствам и предназначены для увеличения мощности подводимых электрических сигналов за счет энергии местного источника. С помощью магнитных усилителей можно осуществлять суммирование, дифференцирование, интегрирование и сравнение сигналов, стабилизацию напряжения, тока и т. д. В усилителях следящего привода их применяют в основном в оконечных и предоконечных каскадах мощного усиления.

Магнитные усилители обладают высоким коэффициентом полезного действия и значительными коэффициентами усиления по мощности и току. Они надежно работают как при нормальных условиях, так и при повышенной влажности, при высокой и низкой температурах, при тряске, вибрации, ударных ускорениях.

Неотъемлемой частью любого магнитного усилителя является ферромагнитный сердечник, кривая намагничивания которого имеет нелинейный характер. Магнитная проницаемость ферромагнитных материалов резко изменяется при подмагничивании их постоянным током. На этом и основан принцип действия магнитных усилителей [5].

Схема магнитного усилителя (МУ) показана на рис. 1. 22, а. На двух магнитных сердечниках А и В нанесены две обмотки переменного тока W1 и W3, соединенные последовательно. Обмотка подмагничивания W2 охватывает стержни обоих сердечников и питается от источников постоянного тока. Число витков и их направление в обмотках W1 и W3 выбирают таким образом, чтобы сумма их магнитных потоков Ф1 и Ф2 была равна нулю и в обмотке W2 не индуктировалась электродвижущая сила.

При сравнительно небольшом увеличении напряжения постоянного тока UВХ магнитная проницаемость сердечника резко снижается и, следовательно, понижается индуктивное сопротивление обмотки переменного тока. Увеличивается ток, проходящий через нагрузку RН, включенную в цепь переменного тока и, следовательно, увеличивается напряжение UВЫХ, снимаемое с нагрузки. Зависимость величины выходного напряжения UВЫХ от входного напряжения UВХ приведена на рис 1. 22, б. При отсутствии подмагничивания выxодное напряжение мало. При подмагничивании выходное напряжение сильно увеличивается.

 

Рис. 1. 22. Схема (а) и характеристика (б) магнитного усилителя

Коэффициент усиления магнитного усилителя по мощности определяют из следующего выражения

,                                         (1. 13)

 

где РВЫХ – мощность в нагрузке при подмагничивании усилителя, Вт; РВХ – мощность, выделяющаяся в сопротивлении нaгpузки при Р0 = 0, Вт; Р0 – мощность подмагничивания (управления), Вт.

Коэффициент усиления магнитного усилителя по мощности зависит от материала; так, при трансформаторной стали он находится в пределах 50…200, а при использовании пермаллоя возрастает до 1000. С повышением частоты тока коэффициент усиления магнитного усилителя значительно возрастает, и при частоте 500 Гц он доходит для магнитного усилителя на пермаллое до 2000. При применении положительной обратной связи коэффициент усиления МУ может быть значительно увеличен (до 3000…5000 и выше).

Магнитные усилители обладают следующими положительными качествами: отсутствием электрической связи между цепью нагрузки и цепями управления, а также возможностью суммирования на обмотках управления нескольких входных сигналов, не связанных электрически; простотой и надежностью конструкции; легкостью эксплуатации; постоянной готовностью к действию; отсутствием вращающихся частей и подвижных контактов; возможностью значительных перегрузок; высоким коэффициентом полезного действия. Эти достоинства объясняют широкое распространение магнитных усилителей [5, 6].

Электромaшинные усилители. Электромашинный усилитель (ЭМУ) представляет собой электрическую машину постоянного тока, в которой одна из двух пар щеток замкнута накоротко (рис. 1. 23). ЭМУ могут иметь несколько или одну обмотку управления, которые с помощью тока возбуждения небольшой силы позволяют управлять значительной выходной мощностью.

 

Рис. 1. 23. Электромашинный усилитель

 

При вращающемся ЭМУ от подачи возбуждения в управляющую обмотку (УО), в ней возникает магнитный поток возбуждения ФВ, который вызывает в якоре ЭМУ ЭДС Так как щетки поперечной оси 2 – 2 замкнуты накоротко, то под влиянием этой небольшой ЭДС по обмотке якоря пройдет значительный ток I2, который создаст мощный поперечный поток Ф2.

Под действием Ф2 в якоре ЭМУ возникает большая продольная ЭДС, снимаемая с продольных щеток 1 – 1. Если ЭМУ теперь замкнуть на какую-либо нагрузку, то по обмотке якоря пройдет ток I1, который создаст магнитный поток реакции якоря Фя, размагничивающий ЭМУ.

Чтобы устранить это влияние потока Фя, на полосах ЭМУ наносится компенсационная обмотка КО, включенная последовательно с якорем в цепь нагрузки, магнитный поток которой Фк будет компенсировать влияние магнитного потока Фя. Для точной компенсации потока Фя служит шунтирующее сопротивление rш.

Коэффициент усиления по мощности ЭМУ составляет 5000…10000.

Достаточное распространение получили такие комбинированные усилительные системы, как электронно-тиратронные, электронно-магнитные, полупроводниково-магнитные.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...