Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Проверка сбалансированности задачи

 

Прежде чем проверять сбалансированность задачи, надо исключить объем гарантированной поставки из дальнейшего рассмотрения. Для этого вычтем 40 т из следующих величин:

· из запаса третьего склада = 60-40= 20т/мес.;

· из потребности в муке пятой хлебопекарни

b2 = 73,92-40 = 33,92 т/мес.

Согласно условию задачи мука хранится и перевозится в мешках по 50 кг, то есть единицами измерения переменных хij являются мешки муки. Но

запасы муки на складах и потребности в ней магазинов заданы в тоннах. Поэтому для проверки баланса и дальнейшего решения задачи приведем эти величины к одной единице измерения - мешкам. Например, запас муки на

первом складе равен 80 т-мес., или 80т/мес. / 0,050т./меш.= 1600 меш/мес, а потребность      третьей хлебопекарни составляет 58,88т/мес, или 58,88т/мес / 0,050 т./меш.= 1178меш./мес. Округление при расчете потребностей надо проводить в большую сторону, иначе потребность в муке не будет удовлетворена полностью.

Для данной ТЗ имеет место соотношение

                          склады             хлебопекарни

     1600+1400+400+1100 < 1178+1249+679

                         4500меш./мес.                 3106 меш./мес.

Ежемесячный суммарный запас муки на складах больше суммарной потребности хлебопекарен на 1394 мешков муки, откуда следует вывод: ТЗ не сбалансирована.

 

Построение сбалансированной транспортной матрицы

 

Сбалансированная транспортная матрица представлена в таблице 3. Стоимость перевозки муки должна быть отнесена к единице продукции, то есть к 1 мешку муки. Так, например, тариф перевозки из первого склада в третий магазин равен 800 руб./т • 0,050 т/меш. = 40 руб./меш.

Для установления баланса необходим дополнительный фиктивный магазин. Фиктивные тарифы перевозки зададим таким образом, чтобы они были дороже реальных тарифов.

Невозможность доставки грузов с третьего  склада в третью хлебопекарню и с четвертого склада в пятую хлебопекарню задается в модели с помощью запрещающего тарифа, который должен превышать величину фиктивного тарифа.                                                              Таблица 3

Транспортная матрица задачи

 

Хлебопекарни

Запас, мешки

Склады X3 Х4 Х5 Х6
С! 40 10 10 50 1600
С2 25 30 25 50 1400
С3 100 30 15 50 400
С4 10 20 100 50 1100
Спрос, мешки 1178 1249 679 1394 = 4500

Задание целевой функции

 

Формальная ЦФ, то есть суммарные затраты на все возможные перевозки муки, учитываемые в модели, задается следующим выражением:

 L(X) = 40 х11+10х12 + 10х13 +50 х14 +

           +25х21+30х22 +25х23+50 х24+

           + 100х31 + 30х32 +15х33 +50 х34+

                                       +10 х41+20 х42 +100 х43+50 х44               min (руб./мес)..

 

При этом следует учитывать, что вследствие использования фиктивных тарифов реальная ЦФ будет меньше формальной ЦФ на стоимость найденных в процессе решения фиктивных перевозок.

Задание ограничений:

 х1112 + х13 + х14 =1600,

                                                     х212223+ х24 =1400,

 х31 + х3233 + х34=400,

х41+ х42 + х43+ х44 =1100,

                                                     х11+ х21+ х31 + х41=1178,

х1222+ х32+ х42=1249,

                                                     х132333+ х43=679,

 х14+ х24+ х34+ х44 =1394,

                                             хij  0(.

Решим задачу с помощью средств MS Excel. Аналогично пунктам 3.1.2-3.1.3-введем данные, целевую функцию в ячейку F3, ограничения - в ячейки С8:С15 (рис.16).

Стоимость фиктивных перевозок составит: 127410 руб.. Найдем стоимость необходимых перевозок: 127410-1400(сумма фиктивных расходов)= 126010 руб.

Из рис.13 мы также видим какое количество мешков муки из какого склада поступит на каждую хлебопекарню:

2х3 = 1178 мешка;

1х4 = 1027 мешка;

2х4 = 222 мешка;

1х5 = 573 мешка + гарантированная поставка 800 мешков;

4х5 = 106 мешков (перевозка запрещена).


Заключение

 

После проведенных вычислений, в первой задаче, на нахождение значения переменных, обеспечивающие минимизацию целевой функции, мы получили следующие результаты:

x 1 = А3 = 0, x 2 = В3 = 14,43, x 3 =С3 = 39,93, x 4 =D3 =15,10, x 5 =Е3=0

    Во втором решении, одноиндексной задачи линейного программирования, получаем итоговый ответ:

   х1 = 326шт./мес., х2 = 762 шт./мес., х3 = 12 шт./мес.,

   L(X) = 39753 руб./мес.,

В транспортной задаче, номер 3, стоимость необходимых перевозок составила 126010 руб.

В данной работе мы не только исследовали, но и доказали выгодность проведения расчетов задач линейного программирования и, в частности, электронных таблиц Excel.


Библиографический список

1. А.Н. Карасев, Н.Ш. Кремер, Т.Н. Савельева [текст]: «Математические методы в экономике», 1996. – 354 с.

2. Общий курс высшей математики для экономистов [Текст]: Учебник / под ред В.И. Ермакова.- М.: ИНФА - М. - 656 с. - (серия «высшее образование»).

3. Т.Л. Партыкина, И.И. Попов Математические методы [Текст]: учебник. - М.: ФОРУМ: ИНФА-М, 2005. - 464 с.: ил - (профессиональное образование).

4. Федосеев В.В. и др. Экономико-математические методы и прикладные модели: учебное пособие для ВУЗов. - М.: Юнити, 2002.

5. Лященко И.Н. Линейное и нелинейное программирования [Текст]: И.Н.Лященко, Е.А.Карагодова, Н.В.Черникова. - К.: «Высшая школа», 1992, 372 с.

6. Гольштейн Е.Г., Юдин Д.Б. Задачи линейного программирования транспортного типа. - M.: Наука, 1989. - 382с.

7. Балашевич В.А. [Текст]: Основы математического программирования. Мн.: Выш. шк. 2002. - 173с.

8. Branch M.A., T.F. Coleman, Y. Li. [Текст]:  A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems. SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp. 1-23, 1999.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...