Проверка сбалансированности задачи
Прежде чем проверять сбалансированность задачи, надо исключить объем гарантированной поставки из дальнейшего рассмотрения. Для этого вычтем 40 т из следующих величин: · из запаса третьего склада = 60-40= 20т/мес.; · из потребности в муке пятой хлебопекарни b2 = 73,92-40 = 33,92 т/мес. Согласно условию задачи мука хранится и перевозится в мешках по 50 кг, то есть единицами измерения переменных хij являются мешки муки. Но запасы муки на складах и потребности в ней магазинов заданы в тоннах. Поэтому для проверки баланса и дальнейшего решения задачи приведем эти величины к одной единице измерения - мешкам. Например, запас муки на первом складе равен 80 т-мес., или 80т/мес. / 0,050т./меш.= 1600 меш/мес, а потребность третьей хлебопекарни составляет 58,88т/мес, или 58,88т/мес / 0,050 т./меш.= 1178меш./мес. Округление при расчете потребностей надо проводить в большую сторону, иначе потребность в муке не будет удовлетворена полностью. Для данной ТЗ имеет место соотношение склады хлебопекарни 1600+1400+400+1100 < 1178+1249+679 4500меш./мес. 3106 меш./мес. Ежемесячный суммарный запас муки на складах больше суммарной потребности хлебопекарен на 1394 мешков муки, откуда следует вывод: ТЗ не сбалансирована.
Построение сбалансированной транспортной матрицы
Сбалансированная транспортная матрица представлена в таблице 3. Стоимость перевозки муки должна быть отнесена к единице продукции, то есть к 1 мешку муки. Так, например, тариф перевозки из первого склада в третий магазин равен 800 руб./т • 0,050 т/меш. = 40 руб./меш. Для установления баланса необходим дополнительный фиктивный магазин. Фиктивные тарифы перевозки зададим таким образом, чтобы они были дороже реальных тарифов.
Невозможность доставки грузов с третьего склада в третью хлебопекарню и с четвертого склада в пятую хлебопекарню задается в модели с помощью запрещающего тарифа, который должен превышать величину фиктивного тарифа. Таблица 3 Транспортная матрица задачи
Задание целевой функции
Формальная ЦФ, то есть суммарные затраты на все возможные перевозки муки, учитываемые в модели, задается следующим выражением: L(X) = 40 х11+10х12 + 10х13 +50 х14 + +25х21+30х22 +25х23+50 х24+ + 100х31 + 30х32 +15х33 +50 х34+ +10 х41+20 х42 +100 х43+50 х44 min (руб./мес)..
При этом следует учитывать, что вследствие использования фиктивных тарифов реальная ЦФ будет меньше формальной ЦФ на стоимость найденных в процессе решения фиктивных перевозок. Задание ограничений: х11+х12 + х13 + х14 =1600, х21+х22 +х23+ х24 =1400, х31 + х32 +х33 + х34=400, х41+ х42 + х43+ х44 =1100, х11+ х21+ х31 + х41=1178, х12+х22+ х32+ х42=1249, х13+х23+х33+ х43=679, х14+ х24+ х34+ х44 =1394, хij 0(. Решим задачу с помощью средств MS Excel. Аналогично пунктам 3.1.2-3.1.3-введем данные, целевую функцию в ячейку F3, ограничения - в ячейки С8:С15 (рис.16). Стоимость фиктивных перевозок составит: 127410 руб.. Найдем стоимость необходимых перевозок: 127410-1400(сумма фиктивных расходов)= 126010 руб. Из рис.13 мы также видим какое количество мешков муки из какого склада поступит на каждую хлебопекарню:
2х3 = 1178 мешка; 1х4 = 1027 мешка; 2х4 = 222 мешка; 1х5 = 573 мешка + гарантированная поставка 800 мешков; 4х5 = 106 мешков (перевозка запрещена). Заключение
После проведенных вычислений, в первой задаче, на нахождение значения переменных, обеспечивающие минимизацию целевой функции, мы получили следующие результаты: x 1 = А3 = 0, x 2 = В3 = 14,43, x 3 =С3 = 39,93, x 4 =D3 =15,10, x 5 =Е3=0 Во втором решении, одноиндексной задачи линейного программирования, получаем итоговый ответ: х1 = 326шт./мес., х2 = 762 шт./мес., х3 = 12 шт./мес., L(X) = 39753 руб./мес., В транспортной задаче, номер 3, стоимость необходимых перевозок составила 126010 руб. В данной работе мы не только исследовали, но и доказали выгодность проведения расчетов задач линейного программирования и, в частности, электронных таблиц Excel. Библиографический список 1. А.Н. Карасев, Н.Ш. Кремер, Т.Н. Савельева [текст]: «Математические методы в экономике», 1996. – 354 с. 2. Общий курс высшей математики для экономистов [Текст]: Учебник / под ред В.И. Ермакова.- М.: ИНФА - М. - 656 с. - (серия «высшее образование»). 3. Т.Л. Партыкина, И.И. Попов Математические методы [Текст]: учебник. - М.: ФОРУМ: ИНФА-М, 2005. - 464 с.: ил - (профессиональное образование). 4. Федосеев В.В. и др. Экономико-математические методы и прикладные модели: учебное пособие для ВУЗов. - М.: Юнити, 2002. 5. Лященко И.Н. Линейное и нелинейное программирования [Текст]: И.Н.Лященко, Е.А.Карагодова, Н.В.Черникова. - К.: «Высшая школа», 1992, 372 с. 6. Гольштейн Е.Г., Юдин Д.Б. Задачи линейного программирования транспортного типа. - M.: Наука, 1989. - 382с. 7. Балашевич В.А. [Текст]: Основы математического программирования. Мн.: Выш. шк. 2002. - 173с. 8. Branch M.A., T.F. Coleman, Y. Li. [Текст]: A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems. SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp. 1-23, 1999.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|