Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Нобелевская премия по физике 2010 года. Новое лицо углерода




Text 6

НОБЕЛЕВСКАЯ ПРЕМИЯ ПО ФИЗИКЕ 2010 ГОДА. НОВОЕ ЛИЦО УГЛЕРОДА

Нобелевскую премию по физике 2010 года присудили за исследования графена — двумерного материала, проявляющего необычные и одновременно весьма полезные свойства. Его открытие сулит не только новые технологии, но и развитие фундаментальной физики, результатом чего могут стать новые знания о строении материи. Лауреатами Нобелевской премии по физике нынешнего года стали Андре Гейм и Константин Новосёлов — профессора Манчестерского университета (Великобритания), выпускники Московского физико-технического института.

Графен, материал толщиной всего в один атом, построен из «сетки» атомов углерода, уложенных, подобно пчелиным сотам, в ячейки гексагональной (шестиугольной) формы. Это ещё одна аллотропная форма углерода наряду с графитом, алмазом, нанотрубками и фуллереном. Материал обладает отличной электропроводностью, хорошей теплопроводностью, высокой прочностью и практически полностью прозрачен.

Идея получения графена «лежала» в кристаллической решётке графита, которая представляет собой слоистую структуру, образованную слабо связанными слоями атомов углерода. То есть графит, по сути, можно представить как совокупность слоёв графена (двумерных кристаллов), соединённых между собой.

Графит — материал слоистый. Именно это свойство нобелевские лауреаты и использовали для получения графена, несмотря на то что теория предсказывала (и предыдущие эксперименты подтверждали), что двумерный углеродный материал при комнатной температуре существовать не может — он будет переходить в другие аллотропные формы углерода, например, сворачиваться в нанотрубки или в сферические фуллерены.

Международная команда учёных под руководством Андре Гейма, в которую входили исследователи из Манчестерского университета (Великобритания) и Института проблем технологии микроэлектроники и особо чистых материалов (Россия, г. Черноголовка), получила графен простым отшелушиванием слоёв графита. Для этого на кристалл графита наклеивали обычный скотч, а потом снимали: на ленте оставались тончайшие плёнки, среди которых были и однослойные. (Как тут не вспомнить: «Всё гениальное — просто»! ) Позже с помощью этой техники были получены и другие двумерные материалы, в том числе высокотемпературный сверхпроводник BiSrCaCuO.

Сейчас такой способ называется «микромеханическим расслоением», он позволяет получать наиболее качественные образцы графена размером до 100 микрон.

Другой замечательной идеей будущих нобелевских лауреатов было нанесение графена на подложку из окиси кремния (SiO2). Благодаря этой процедуре графен стало возможным наблюдать под микроскопом (от оптического до атомно-силового) и исследовать.

Первые же эксперименты с новым материалом показали, что в руках учёных не просто ещё одна форма углерода, а новый класс материалов со свойствами, которые не всегда можно описать с позиций классической теории физики твёрдого тела.

Полученный двумерный материал, будучи полупроводником, обладает проводимостью, как у одного из лучших металлических проводников — меди. Его электроны имеют весьма высокую подвижность, что связано с особенностями его кристаллического строения. Очевидно, что это качество графена вкупе с его нанометровой толщиной делает его кандидатом на материал, который мог бы заменить в электронике, в том числе в будущих быстродействующих компьютерах, не удовлетворяющий нынешним запросам кремний. Исследователи полагают, что новый класс графеновой наноэлектроники с базовой толщиной транзисторов не более 10 нм (на графене уже получен полевой транзистор) не за горами.

Сейчас физики работают над дальнейшим увеличением подвижности электронов в графене. Расчёты показывают, что ограничение подвижности носителей заряда в нём (а значит, проводимости) связано с наличием в SiO2-подложке заряженных примесей. Если научиться получать «свободновисящие» плёнки графена, то подвижность электронов можно увеличить на два порядка — до 2× 106 см2/Вс. Такие эксперименты уже ведутся, и довольно успешно. Правда, идеальная двумерная плёнка в свободном состоянии нестабильна, но если она будет деформирована в пространстве (то есть будет не идеально плоской, а, например, волнистой), то стабильность ей обеспечена. Из такой плёнки можно сделать, к примеру, наноэлектромеханическую систему — высокочувствительный газовый сенсор, способный реагировать даже на одну-единственную молекулу, оказавшуюся на его поверхности.

Другие возможные приложения графена: в электродах суперконденсаторов, в солнечных батареях, для создания различных композиционных материалов, в том числе сверхлёгких и высокопрочных (для авиации, космических аппаратов и т. д. ), с заданной проводимостью. Последние могут чрезвычайно сильно различаться. Например, синтезирован материал графан, который в отличие от графена — изолятор. Получили его, присоединив к каждому атому углерода исходного материала по атому вод — можно восстановить простым нагревом (отжигом) графана. В то же время графен, добавленный в пластик (изолятор), превращает его в проводник.

Почти полная прозрачность графена предполагает использование его в сенсорных экранах, а если вспомнить о его «сверхтонкости», то понятны перспективы его применения для будущих гибких компьютеров (которые можно свернуть в трубочку подобно газете), часов-браслетов, мягких световых панелей.

Но любые приложения материала требуют его промышленного производства, для которого метод микромеханического расслоения, используемый в лабораторных исследованиях, не годится. Поэтому сейчас в мире разрабатывается огромное число других способов его получения. Уже предложены химические методы получения графена из микрокристаллов графита. Один из них, к примеру, даёт на выходе графен, встроенный в полимерную матрицу. Описаны также осаждение из газовой фазы, выращивание при высоком давлении и температуре, на подложках карбида кремния. В последнем случае, который наиболее приспособлен к промышленному производству, плёнка со свойствами графена формируется при термическом разложении поверхностного слоя подложки.

Фантастически велика ценность нового материала для развития физических исследований. Многие явления, для изучения которых требовалось строительство огромных ускорителей элементарных частиц, теперь можно исследовать, вооружившись гораздо более простым инструментом — тончайшим в мире материалом.

 

(Наука и жизнь №11, 2010г.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...