Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Асимптотическая свобода и конфайнмент




Text 3

АСИМПТОТИЧЕСКАЯ СВОБОДА И КОНФАЙНМЕНТ

Нобелевская премия по физике 2004 года присуждена американским исследователям Дэвиду Гроссу, Дэвиду Политцеру и Фрэнку Вильчеку за " открытие явления асимптотической свободы в теории сильных взаимодействий".

Частицы, участвующие в сильном взаимодействии, — адроны, к которым, в частности, относятся протоны и нейтроны, состоят из кварков. Имеется шесть " сортов" (физики называют их " ароматами" ) кварков, и у каждого есть свой антикварк. Кварковая модель предполагает, что один тип адронов (барионы) состоит из трех кварков, другой (мезоны) — из кварка и антикварка. Но здесь возникает сложность: из законов квантовой механики следует, что стабильной частица будет, только обладая наименьшей энергией, когда все кварки находятся в одном и том же состоянии. Это, однако, запрещено так называемым принципом Паули: кварки имеют полуцелый спин (1/2) и относятся к классу фермионов.

Выход предложили российские физики Н. Н. Боголюбов,
Б. В. Струминский, А. Н. Тахвелидзе и японец Й. Намбу. Они ввели еще одно квантовое число — " цвет", который способен принимать три разных значения: красный, синий и зеленый (в отечественной литературе по предложению академика Л. Б. Окуня принят желто-сине-красный набор). Антикварки обладают дополнительными цветами (фиолетовым, оранжевым и зеленым).

Кварки могут быть любого цвета, но в частице сочетаются в таких цветовых состояниях, что в сумме дают " белый цвет", поэтому адроны " бесцветны". Цветовые заряды взаимодействуют аналогично зарядам электрическим: одинаковые отталкиваются, противоположные притягиваются, обмениваясь квантами цветового поля — глюонами. Характер их взаимодействий, весьма сложный, определяется законами квантовой хромодинамики. Наиболее важный вывод из них состоит в том, что и сами глюоны, переносчики сильного взаимодействия между кварками, в отличие от фотонов, квантов электромагнитного взаимодействия, электрических зарядов не имеющих, тоже обладают цветовым зарядом (академик Л. Б. Окунь образно назвал их " светящимся светом" ). Это приводит к так называемому явлению антиэкранировки заряда: эффективные заряды кварков и глюонов велики на большом расстоянии, а при его уменьшении становятся малыми. Расчеты, проделанные на основе теории, показывают, что константа кваркового взаимодействия прямо пропорциональна расстоянию между кварками. Иными словами: чем ближе кварки друг к другу, тем взаимодействие между ними становится слабее, асимптотически уменьшаясь до нуля. В масштабах адрона кварки ведут себя как свободные частицы, а при попытке разорвать адрон сила их взаимного притяжения резко возрастает. И все попытки получить кварк-глюонную плазму, " разбив" протоны в ускорителе на встречных пучках, наталкиваются на большие технические трудности. Этот парадоксальный закон квантовой хромодинамики и получил название асимптотической свободы, а удержание цветных кварков внутри " бесцветных" адронов именуется конфайнментом (от англ. сonfinement — ограничение).

Теория асимптотической свободы была создана в 1973 году; она внесла крупный вклад в Стандартную модель, описывающую фундаментальные взаимодействия – электромагнитное, сильное и слабое — между элементарными частицами. Благодаря созданию этой теории надежно установлены и проработаны все качественные параметры сильного взаимодействия на малых расстояниях (порядка размера адрона) и сделан важный шаг в познании глубинных свойств материи.

(Наука и жизнь №12, 2004г. )

 

Text 4

ГИГАНТСКОЕ МАГНЕТОСОПРОТИВЛЕНИЕ —ТРИУМФ ФУНДАМЕНТАЛЬНОЙ НАУКИ

Нобелевскую премию 2007 года по физике получили физики из Европы Альбер Фер (Albert Fert) и Петер Грюнберг (Peter Grunberg), независимо друг от друга открывшие эффект гигантского магнетосопротивления (GMR — Giant Magnetoresistance). Это не первая награда ученых: за последние двадцать лет их заслуги отметили Физические общества Америки и Европы, Международный союз по физике и прикладной физике, наградили премией Японский фонд науки и технологии и израильский Фонд Вольфа. Открытие стало важным шагом в развитии технологии хранения информации. За необычайно короткий срок удалось перейти от лабораторных образцов к промышленному использованию эффекта GMR в считывающих головках жестких дисков и сверхчувствительных магнитных сенсорах. Однако, как бы ни было велико практическое значение открытия, нельзя не отметить, что Нобелевская премия по физике 2007 года — это, прежде всего, — триумф фундаментальной науки.

Мы с вами — свидетели удивительных достижений последних лет в области компактного хранения информации: размеры жестких дисков уменьшаются, а емкость увеличивается и измеряется уже терабайтами (тысячами миллиардов байт). Однако этот технологический прогресс вряд ли был бы возможен без продолжительных фундаментальных исследований магнитных и квантово-механических свойств материалов.

Еще 150 лет назад британский физик Уильям Томпсон (лорд Кельвин) начал изучать влияние магнитного поля на электрическое сопротивление материалов. В 1857 году он опубликовал статью, в которой описал, как изменяется сопротивление железа в зависимости от направления магнитного поля. Оказалось, что, если пропускать электрический ток вдоль магнитного поля, сопротивление возрастает, а если поперек — уменьшается. Это явление получило название анизотропного магнетосопротивления. На его основе созданы широко используемые на практике магниторезистивные материалы, в частности пермаллой — сплав железа и никеля.

Следующий шаг сделал английский физик Невилл Мотт, получивший в 1977 году Нобелевскую премию по физике “за фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем”. В середине тридцатых годов XX века он обратил внимание коллег на некоторые аномалии переноса электричества в ферромагнетиках, возникающие из-за того, что у электрона, помимо заряда, есть спин.

Понятие “спин” вошло в физику более восьмидесяти лет назад. Спин — это собственный момент вращения электрона (хотя, строго говоря, никакого вращения у электрона нет), его важное квантовое свойство. Со спином связан и магнитный момент электрона, поэтому его поведение в магнитном материале зависит от направления спина. Большинство электронов выстраиваются так, что их спин направлен вдоль магнитного поля, но некоторая часть электронов имеет противоположно направленный спин. Различия в направлении спинов можно использовать для получения разнообразных магнитоэлектрических эффектов. Однако до последнего времени электроника, используемая в компьютерной и бытовой технике, “эксплуатировала” только заряд электрона. Более того, по словам ирландского физика Майкла Коуи, традиционная электроника игнорировала спин. Это известное высказывание получило название “леммы Коуи”.

Эра спиновой электроники началась в 1988 году, когда было открыто гигантское магнетосопротивление (GMR) в многослойных материалах с чередующимися тонкими слоями ферромагнитных и немагнитных металлов. Толщина отдельного слоя составляет всего несколько атомов. Сопротивление таких образцов велико, если магнитные поля в ферромагнетиках направлены в противоположные стороны, и минимально, когда магнитные поля параллельны.

В чем причина этого эффекта? Электрическое сопротивление проводника тем выше, чем чаще электроны, влекомые электрическим полем, сталкиваются с препятствиями (неоднородностями кристаллической решетки, примесями) и отклоняются от прямого пути. При этом электроны с разнонаправленными спинами при встрече с препятствиями ведут себя немного по-разному. Одни из них, например, те, спины которых совпадают с направлением магнитного поля, тормозятся в меньшей степени, а противоположно направленные — в большей. Какие электроны будут иметь преимущество, зависит от типа магнитного материала, в который специально вводят примеси других веществ. Например, если добавить в никель небольшое количество железа или кобальта, электроны со спином, направленным вниз, будут рассеиваться в 20 раз сильнее, чем электроны, спин которых направлен вверх.

Явление гигантского магнетосопротивления удается наблюдать только в очень тонких пленках. При движении в толстых проводниках электрон успевает сменить направление спина под влиянием разных причин. Предпосылкой к открытию эффекта GMR стали технологии для изготовления тончайших (нанометровых) слоев металла, появившиеся в семидесятые годы XX века. Так что GMR-технологию можно рассматривать как одно из первых применений популярных сегодня нанотехнологий.

Новое научно-технологическое направление, использующее спиновые эффекты, получило название “спинтроника”. Были разработаны спиновые клапаны и магнитные туннельные переходы, которые позволили на порядки увеличить плотность записи информации.

(Наука и жизнь №11, 2007г. )

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...