Соединения простых трубопроводов Последовательное соединение
⇐ ПредыдущаяСтр 5 из 5 Простые трубопроводы могут соединяться между собой, при этом их соединение может быть последовательным или параллельным. Последовательное соединение. Возьмем несколько труб различной длины, разного диаметра и содержащих разные местные сопротивления, и соединим их последовательно (рис. 6.3, а). Рис. 6.3. Последовательное соединение трубопроводов При подаче жидкости по такому составному трубопроводу от точки М к точке N расход жидкости Q во всех последовательно соединенных трубах 1, 2 и 3 будет одинаков, а полная потеря напора между точками М и N равна сумме потерь напора во всех последовательно соединенных трубах. Таким образом, для последовательного соединения имеем следующие основные уравнения: Q1 = Q2 = Q3 = Q ΣhM-N = Σh1 + Σh2 + Σh3 Эти уравнения определяют правила построения характеристик последовательного соединения труб (рис. 6.3, б). Если известны характеристики каждого трубопровода, то по ним можно построить характеристику всего последовательного соединения M-N. Для этого нужно сложить ординаты всех трех кривых. 52. Параллельное соединение. Такое соединение показано на рис. 6.4, а. Трубопроводы 1, 2 и 3 расположены горизонтально. Рис. 6.4. Параллельное соединение трубопроводов
Обозначим полные напоры в точках М и N соответственно HM и HN, расход в основной магистрали (т.е. до разветвления и после слияния) - через Q, а в параллельных трубопроводах через Q1, Q2 и Q3; суммарные потери в этих трубопроводах через Σ1, Σ2 и Σ3. Очевидно, что расход жидкости в основной магистрали Q = Q1 = Q2 = Q3 Выразим потери напора в каждом из трубопроводов через полные напоры в точках М и N: Σh1 = HM - HN; Σh2 = HM - HN; Σh3 = HM - HN Отсюда делаем вывод, что
Σh1 = Σh2 = Σh3 т.е. потери напора в параллельных трубопроводах равны между собой. Их можно выразить в общем виде через соответствующие расходы следующим образом Σh1 = K1Q1m; Σh2 = K2Q2m; Σh3 = K3Q3m где K и m - определяются в зависимости от режима течения. Из двух последних уравнений вытекает следующее правило: для построения характеристики параллельного соединения нескольких трубопроводов следует сложить абсциссы (расходы) характеристик этих трубопроводов при одинаковых ординатах (Σ h). Пример такого построения дан на рис. 6.3, б. 53. Разветвленное соединение. Разветвленным соединением называется совокупность нескольких простых трубопроводов, имеющих одно общее сечение - место разветвления (или смыкания) труб.
Рис. 6.5. Разветвленный трубопровод
Пусть основной трубопровод имеет разветвление в сечении М-М, от которого отходят, например, три трубы 1, 2 и 3 разных диаметров, содержащие различные местные сопротивления (рис. 6.5, а). Геометрические высоты z1, z2 и z3 конечных сечений и давления P1, P2 и P3 в них будут также различны. Так же как и для параллельных трубопроводов, общий расход в основном трубопроводе будет равен сумме расходов в каждом трубопроводе: Q = Q1 = Q2 = Q3 Записав уравнение Бернулли для сечения М-М и конечного сечения, например первого трубопровода, получим (пренебрегая разностью скоростных высот) Обозначив сумму первых двух членов через Hст и выражая третий член через расход (как это делалось в п.6.1), получаем HM = Hст 1 + KQ1m Аналогично для двух других трубопроводов можно записать HM = Hст 2 + KQ2m HM = Hст 3 + KQ3m Таким образом, получаем систему четырех уравнений с четырьмя неизвестными: Q1, Q2 и Q3 и HM. Построение кривой потребного напора для разветвленного трубопровода выполняется сложением кривых потребных напоров для ветвей по правилу сложения характеристик параллельных трубопроводов (рис. 6.5, б) - сложением абсцисс (Q) при одинаковых ординатах (HM). Кривые потребных напоров для ветвей отмечены цифрами 1, 2 и 3, а суммарная кривая потребного напора для всего разветвления обозначена буквами ABCD. Из графика видно, что условием подачи жидкости во все ветви является неравенство HM > Hст1.
Истечение под уровень Часто приходится иметь дело с истечением жидкости не в атмосферу, а в пространство, заполненное этой же жидкостью (рис.5.6). такой случай называется истечением под уровень, или истечением через затопленное отверстие.
Рис. 5.6. Истечение по уровень В этом случае вся кинетическая энергия струи теряется на вихреобразование, как при внезапном расширении. Скорость истечения в сжатом сечении струи
где φ - коэффициент скорости; Н - расчетный напор, Расход жидкости равен Таким образом, имеем те же расчетные формулы, что и при истечении в воздух (газ), только расчетный напор Н в данном случае представляет собой разность гидростатических напоров по обе стенки, т.е. скорость и расход жидкости в данном случае не зависят от высот расположения отверстия. Коэффициенты сжатия и расхода при истечении под уровень можно принимать те же, что и при истечении в воздушную среду.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|