Подставляя полученные в (3.20) и (3.23) числовые данные, получаем, что
В. (3.25) Точно таким же образом можно определить напряжение на участке цепи R1R2R3C2. Его комплексная амплитуда равна произведению комплексной амплитуды протекающего через нее тока на комплексное сопротивление этого участка, т.е. с учетом (3.11) и (3.20) В. (3.26) При определении напряжения на сопротивлении R1 необходимо учитывать, что , т.е. так как соединение R1 и R2R3C2 параллельное, то В. (3.27) Комплексная амплитуда тока, протекающего через сопротивление R1, равна отношению комплексной амплитуды напряжения к комплексному сопротивлению элемента. Так как, как было замечено выше, для активного сопротивления , ток можно рассчитать по формуле А. (3.28) Аналогично предыдущему случаю, комплексная амплитуда тока, протекающего через участок цепи R2R3С1, равна отношению комплексной амплитуды напряжения на этом участке к полному комплексному сопротивлению участка. Эти величины уже были найдены ранее в (3.7) и (3.26). Поэтому А. (3.29) Как и было показано выше, напряжение на активном сопротивлении R2 может быть определено как произведение комплексной амплитуды протекающего через него тока на комплексное сопротивление этого элемента, т.е. как В. (3.30) Аналогично (3.30), напряжение на участке цепи R3C2 равно произведению комплексной амплитуды протекающего через нее тока на комплексное сопротивление этого участка, т.е. В.(3.31) Комплексная амплитуда тока, протекающего через емкость C2, равна отношению комплексной амплитуды напряжения к комплексному сопротивлению элемента:
А. (3.32) Комплексная амплитуда тока, протекающего через емкость R3, равна А. (3.33) Полученные результаты заносятся в таблицу, аналогичную приведенной в задании. Таблица 3.1 – Результаты расчета токов и напряжений в элементах цепи
Проверка результатов с помощью законов Кирхгофа Для проверки результатов вычислений с помощью первого закона Кирхгофа необходимо проверить насколько точно выполняется соотношение, определяемое этим законом, а именно: сумма входящих в узел токов равна сумме выходящих токов. Так как в цепи присутствуют реактивные элементы, то все расчеты и величины при этом используются в комплексной форме. Применительно к рассматриваемой схеме для верхнего левого узла должно выполнять соотношение (3.34) Или в числовом виде 7,1·10-4·ej45 = 4,5·10-4·ej43 + 2,3·10-4·ej49 . (3.35) Рассчитаем значение выражения в правой части. Для перехода от показательной формы к нормальной используется следующее математическое правило: действительная часть равна произведению модуля на косинус аргумента, а мнимая – произведению модуля на синус аргумента, т.е. в общем виде для произвольного комплексного числа в показательной форме можно записать: . (3.36) Для рассматриваемого примера в числовой форме: 4,5·10-4·ej43 + 2,3·10-4·ej49 =4,5·10-4·cos(430) + j4,5·10-4·sin(430) + + 2,3·10-4 ·cos(490) + j2,3·10-4·sin(490) = 3,3·10-4 + j3,1·10-4 +1,5·10-4 + + j1,7·10-4 = 4,8·10-4 – j4,8·10-4 ≈ 6,7·10-4 ·ej45 . (3.37)
Таким образом, получается, что должно выполняться соотношение 7,1·10-4·ej45 = 6,7·10-4 ·ej45. (3.38) Как видно из (3.38), аргументы обоих чисел точно равны друг другу, а модули отличаются на 6 %, что можно рассматривать как небольшую погрешность. Аналогичным образом может быть проверено выполнение первого закона Кирхгофа и для остальных узлов. Для проверки результатов с помощью второго закона Кирхгофа необходимо проверить насколько точно выполняется соотношение, определяемое этим законом, а именно: для левого контура цепи должно выполнять соотношение (3.39) Или в числовом виде 7,1·ej45 + 7.1·e-j45 + 0.9·ej43 = 10· ej0. (3.40) Для суммирования в левой части этого выражения необходимо произвести преобразование чисел из показательной в нормальную форму: 7,1·ej45 + 7,1·e-j45 + 0,9·ej43 = 7,1·cos(450) + j7,1·sin(450) + 7,1·cos(450) – – j7,1·sin(450) + 0,9·cos(430) + j0,9·sin(430) = 10,7 + j0,6 ≈ 7,1·ej3. (3.41) Таким образом, должно выполняться соотношение 7,1·ej3 = 10·ej0. (3.42)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|