Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Искусственные фотокаталитические системы разложения воды

 

Созданный природой в ходе эволюции уникаль­ный восьмиквантовый фотосинтетический аппа­рат, включающий две фотосистемы, объединенные сложной многоступенчатой электрон-транспортной цепью, обеспечивает не только окисление воды и восстановление NADP+, но и синтез энергоемких соединений аденозинтрифосфата из аденозинди-фосфата и неорганического фосфата, которые в дальнейшем выполняют роль универсального ис­точника энергии в клетке, обеспечивая протекание большинства биохимических процессов [1-3]. В связи с этим заманчивым представляется создание искусственных фотокаталитических систем, вы­полняющих узкоспециализированную функцию фоторазложение воды. При этом нет необходимос­ти моделировать весь сложный механизм фотосин­теза, а следует использовать только основные прин­ципы фотохимического преобразования солнечной энергии в химическую.

Поскольку выделение одной Молекулы кислоро­да требует разложения двух молекул воды, энергети­ческие затраты на проведение одного каталитичес­кого цикла фоторазложения воды при комнатной температуре не могут быть меньше 113,4 ккал/моль, что соответствует энергии квантов ультрафиолетового света (К — 0,252 мкм), практически отсутствующих в спектре солнечного излучения (0,3-1,0 мкм), падающего на поверхность Земли. Это означает, что с точки зрения наиболее полного использования солнечного излучения, достигающего поверхности Земли, наиболее рациональной является четырех-квантовая схема процесса разложения воды, при котором каждый квант света используется для переноса одного электрона. В этом случае пороговая длина волны света составляет 1,008 мкм, что соответствует красной границе солнечного излучения и как следствие этого обеспечивает максимальную эффективность преобразования солнечной энергии в химическую. Таким образом, в отличие от природного фотосинтеза искусственные фотокаталитические системы разложения воды могли бы работать по принципу не двухтактного (см. схему 3), а однотактного фотонасоса.

В настоящее время разрабатываются два типа искусственных фотокаталитических систем: полу­проводниковая и молекулярная. В первом случае в качестве фотокатализатора используются полупро­водниковые материалы на основе халькогенидов, фосфидов и арсенидов переходных металлов. По­глощение кванта света приводит к переносу элек­трона между энергетическими уровнями твердого тела, называемыми зонами: заполненной зоной и зоной проводимости. Образующиеся за­ряды — электрон (е~) в зоне проводимости и поло­жительно заряженная "дырка" (р+) в заполненной зоне — растягиваются в разные стороны электриче­ским полем, существующим на границе полупро­водник-раствор, и участвуют в дальнейших катали­тических процессах восстановления и окисления воды в присутствии нанесенных на поверхность по­лупроводника катализаторов Pt и RuO2. Иммобили­зация на поверхности полупроводника различных органических и неорганических красителей, вы­полняющих функцию фотосенсибилизатора S, позволяет обеспечивать -10% КПД преоб­разования солнечной энергии в химическую. Основная проблема для практического применения таких систем - предотвращение фотокоррозии по­лупроводников и повышение стабильности систем во времени. В молекулярных фотокаталитических системах разложения воды в качестве фотокатализатора, до­норов и акцепторов электрона, участвующих в реак­циях, используются индивидуальные хими­ческие соединения, удовлетворяющие некоторым требованиям. Фотокатализаторы должны обеспе­чивать интенсивное поглощение солнечного излу­чения, иметь высокоэнергетические, долгоживущие возбужденные состояния (ФК*), способные участвовать в бимолекулярных реакциях переноса электрона, обладать высокой химической и фотохимической устойчивостью и эффективно регенерировать свою форму в результате взаимодействия с промежуточ­ными акцепторами или донорами. Наряду с фотохимической и химической устойчи­востью основным требованием к промежуточным донорам и акцепторам электрона является их спо­собность участвовать в обратимых каталитических процессах выделения водорода и кислорода из воды.

В настоящее время показана возможность ис­пользования в качестве компонентов молекуляр­ных фотокаталитических систем достаточно боль­шого круга химических соединений различной природы. Так, в качестве фотокатализаторов пред­ложены системы на основе органических красите­лей, соединений переходных металлов, порфиринов, фталоцианинов и их металлокомплексов.

Основной прогресс, достигнутый в разработке молекулярных фотокаталитических систем разло­жения воды, связан с созданием так называемых жертвенных систем, моделирующих фотосистемы растительного фотосинтеза и осуществляющих выделение либо водорода, либо кислорода из воды с одновременным необратимым расходованием жерт­вы — специально добавленного донора или акцепто­ра электрона. Примером такой жертвенной системы фотокаталитического восстановления воды являет­ся система, содержащая трисбипиридильные ком­плексы рутения и родия [Ru(bpy)3]2+, [Rh(bpy)3]3+ в качестве фотокатализатора и промежуточного ак­цептора электрона. Фотовозбуждение такой систе­мы приводит к фотостимулированному переносу электрона:

 

и последующему каталитическому выделению во­дорода из воды на платиновом катализаторе:

В качестве необратимо расходуемой жертвы, обес­печивающей регенерацию фотокатализатора, ис­пользуется триэтаноламин.

Осуществить замкнутый, не требующий введе­ния дополнительно расходуемых веществ цикл фо­торазложения воды солнечным светом в молеку­лярных фотокаталитических системах пока еще не удается. Основной задачей является разработка методов предотвращения реакции рекомбинации первичных продуктов фоторазделения зарядов, которая протекает намного быстрее, чем сложные каталитические реакции окисления и восста­новления воды. Предполагается, что такая зада­ча может быть решена при переходе к молекулярно-организованным системам, позволяющим (по ана­логии с природным фотосинтезом) получать прост­ранственно разделенные продукты фоторазделения зарядов. Исследования в этом направлении интен­сивно развиваются в последнее время.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...