Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Конструкции и материалы солнечных элементов

 

Для эффективной работы солнечных элементов необходимо соблю­дение ряда условий:

• оптический коэффициент поглощения (а) активного слоя полупроводника должен быть достаточно большим, чтобы обеспечить поглощение существенной части энергии солнечного света в пределах толщины слоя;

• генерируемые при освещении электроны и дырки должны эф­фективно собираться на контактных электродах с обеих сторон активного слоя;

• солнечный элемент должен обладать значительной высотой ба­рьера в полупроводниковом переходе;

• полное сопротивление, включенное последовательно с солнеч­ным элементом (исключая сопротивление нагрузки), должно быть малым для того, чтобы уменьшить потери мощности (джоулево тепло) в процессе работы;

• структура тонкой пленки должна быть однородной по всей активной области солнечного элемента, чтобы исключить закорачива­ние и влияние шунтирующих сопротивлений на характеристики элемента.

Производство структур на основе монокристаллического крем­ния, удовлетворяющих данным требованиям, - процесс технологи­чески сложный и дорогостоящий. Поэтому внимание было обраще­но на такие материалы, как сплавы на основе аморфного кремния (a-Si:H), арсенид галлия и поликристаллические полупроводники [4].

Аморфный кремний выступил в качестве более дешевой аль­тернативы монокристаллическому. Первые СЭ на его основе бы­ли созданы в 1975 году. Оптическое поглощение аморфного крем­ния в 20 раз выше, чем кристаллического. Поэтому для существен­ного поглощения видимого света достаточно пленки a-Si:H толщи­ной 0,5-1,0 мкм вместо дорогостоящих кремниевых 300-мкм под­ложек. Кроме того, благодаря существующим технологиям получе­ния тонких пленок аморфного кремния большой площади не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на осно­ве a-Si:H производят при более низких температурах (300°С): мож­но использовать дешевые стеклянные подложки, что сократит рас­ход кремния в 20 раз.

Пока максимальный КПД экспериментальных элементов на ос­нове a-Si:H - 12% - несколько ниже КПД кристаллических кремни­евых СЭ (-15%). Однако не исключено, что с развитием технологии КПД элементов на основе a-Si:H достигнет теоретического потолка -16%.

Наиболее простые конструкции СЭ из a-Si:H были созданы на основе структуры металл - полупроводник (диод Шотки) (рис. 5).

 Несмотря на видимую простоту, их реализация достаточно про­блематична - металлический электрод должен быть прозрач­ным и равномерным по толщи­не, а все состояния на границе металл/a-SiiH - стабильными во времени. Чаще всего солнечные элементы на основе a-Si:H фор­мируют на ленте из нержавею­щей стали или на стеклянных подложках, покрытых проводя­щим слоем. При использовании стеклянных подложек на них наносят прозрачную для света проводящую ок­сидную пленку (ТСО) из Sn02, In203 или Sn02+ln203 (ITO), что позво­ляет освещать элемент через стекло. Поскольку у нелегированного слоя электронная проводимость выражена слабо, барьер Шотки со­здается за счет осаждения металлических пленок с высокой работой выхода (Rt, Rh, Pd), которая обуславливает образование области по­ложительного объемного заряда (обедненного слоя) в a-Si:H.

При нанесении аморфного кремния на металлическую подложку образуется нежелательный потенциальный барьер а-Si:H/металли-ческая подложка, высоту которого необходимо уменьшать. Для это­го используют подложки из металлов с малой работой выхода (Мо, Ni, Nb). Перед нанесением аморфного кремния желательно осадить на металлической подложке тонкий слой (10-30 нм) a-Si:H, легиро­ванный фосфором. Не рекомендуется использовать в качестве ма­териалов электродов легко диффундирующие в аморфный кремний металлы (например, Аи и AI), а также Сu и Аg, поскольку a-Si:H об­ладает плохой адгезией к ним. Отметим, что Uxx солнечных элемен­тов с барьером Шотки на основе a-Si:H обычно не превышает 0,6 В.

Более высокой эффективностью обладают СЭ на основе аморф­ного кремния с р-i-n-структурой (рис.6). В этом "заслуга" рис. 6 широкой нелегированной i-области a-Si:H, поглощающей существенную до­лю света. Но возникает проблема - диффузионная длина дырок в a-Si:H очень мала (-100 нм), поэтому в солнечных элементах на ос­нове a-Si:H носители заряда достигают электродов в основном только благодаря внутреннему электрическому полю, т.е. за счет дрейфа носителей заряда. В СЭ на основе кристаллических полу­проводников носители заряда, имея большую диффузионную дли ну (100 - 200 мкм), достигают электродов и в отсутствие элек­трического поля. Поскольку в простом p-n-переходе в a-Si:H область сильного электрическо­го поля очень узка и диффузи­онная длина носителей заряда мала, в большей части СЭ не происходит эффективного раз­деления носителей заряда, ге­нерируемых при поглощении света. Следовательно, для полу­чения эффективных СЭ на осно­ве р-i-n-сруктуры аморфного ги-дрогенизированного кремния необходимо добиться во всей А области однородного мощного внутреннего электрического по­ля, достаточного для достижения длины дрейфа носителей, соизмеримого с размерами области по­глощения (см. рис. 6).

Данная задача решается, если при изготовлении р-i-n-структуры первым формировать р-слой (рис.7). Для его создания необходимо небольшое количество бора (<1018 см3), а значит, существенного загрязнения нелегированного слоя не происходит.

 В то же время, если первым осаждать n-слой, то наличие остаточного фосфора из­меняет свойства i-слоя. Формирование p-слоя на поверхности прозрачного проводящего электрода обеспечивает с ним хороший эле­ктрический контакт. Однако толщина р-слоя должна быть мала (10 нм), чтобы основная часть света поглощалась в i-области.

 Используется и другая р-i-n-структура СЭ на основе a-Si:H с подложкой из металлической фольги, в частности из нержавеющей стали. Свет попадает со стороны прозрачного электрода, контакти­рующего с n-областью. В результате возрастает плотность тока ко­роткого замыкания благодаря отражающей способности металли­ческой подложки и меньшему оптическому поглощению света леги­рованными фосфором пленками a-Si:H (n-область) по сравнению с легированными бором р-слоями.

 Проблема с применением рассмотренных р-i-n-элементов в том, что их можно оптимизировать только в одном измерении. Значительно больше возможностей в этом плане предоставляет СЭ с поперечным переходом: на изолирующей подложке перпен­дикулярно к поверхности фор­мируется р-i-n-структура a-Si:H (рис. 8). Такой СЭ не требует прозрачного проводящего окси­да в качестве контакта и широкозонного р-слоя для создания прозрачного оконного слоя, его можно изготовить посредством стандартных технологий микроэле­ктроники.

Один из наиболее перспективных материалов для создания вы­сокоэффективных солнечных батарей - арсенид галлия.

Это объ­ясняется таким его особенностями, как:

• почти идеальная для однопереходных солнечных элементов ши­рина запрещенной зоны 1,43 эВ;

повышенная способность к поглощению солнечного излучения:
 требуется слой толщиной всего в несколько микрон;

• высокая радиационная стойкость, что совместно с высокой эф­фективностью делает этот материал чрезвычайно привлекатель­ным для использования в космических аппаратах;

• относительная нечувствительность к нагреву батарей на основе
GaAs;

• характеристики сплавов GaAs с алюминием, мышьяком, фосфо­ром или индием дополняют характеристики GaAs, что расширя­ет возможности при проектировании СЭ.

Главное достоинство арсенида галлия и сплавов на его основе -широкий диапазон возможностей для дизайна СЭ. Фотоэлемент на основе GaAs может состоять из нескольких слоев различного соста­ва. Это позволяет разработчику с большой точностью управлять ге­нерацией носителей заряда, что в кремниевых СЭ ограничено до­пустимым уровнем легирования. Типичный СЭ на основе GaAs со­стоит из очень тонкого слоя AIGaAs в качестве окна.

 Основной недостаток арсенида галлия - высокая стоимость. Для удешевления производства предлагается формировать СЭ на более дешевых подложках; выращивать слои GaAs на удаляемых подлож­ках или подложках многократного использования.

Поликристаллические тонкие пленки также весьма перс­пективны для солнечной энергетики.

Чрезвычайно высока способность к поглощению солнечного из­лучения у диселенида меди и индия (CulnSe 2) - 99 % света погло­щается в первом микроне этого материала (ширина запрещенной зоны - 1,0 эВ) [4]. Наиболее распространенным материалом для изготовления окна солнечной батареи на основе CulnSe2 является CdS. Иногда для улучшения прозрачности окна в сульфид кадмия добавляют цинк. Немного галлия в слое CulnSe2 увеличивает шири­ну запрещенной зоны, что приводит к росту напряжения холостого хода и, следовательно, повышению эффективности устройства. Один из основных способов получения CulnSe2 - электрохимиче­ское осаждение из растворов CuS04, ln2(S04)3 и Se02 в деионизо-ванной воде при соотношении компонентов Cu:ln:Se как 1:5:3 и рН =1,2-2,0.

Еще один перспективный материал для фотовольтаики - теллу-рид кадмия (СdТе). У него почти идеальная ширина запрещенной зоны (1,44 эВ) и очень высокая способность к поглощению излуче­ния. Пленки CdTe достаточно дешевы в изготовлении. Кроме того, технологически несложно получать разнообразные сплавы CdTe с Zn, Hg и другими элементами для создания слоев с заданными свойствами.

Подобно CulnSe2, наилучшие элементы на основе CdTe включа­ют гетеропереход с CdS в качестве оконного слоя. Оксид олова ис­пользуется как позрачный контакт и просветляющее покрытие. Се­рьезная проблема на пути применения CdTe - высокое сопротив­ление слоя р-СоТе, что приводит к большим внутренним потерям. Но она решена в p-i-n-структуре с гетеропереходом CoTe/ZnTe (рис. 9).

Наиболее ответственный этап формирования СЭ на осно­ве CdS/CdTe - осаждение по­глощающего слоя CdTe толщи­ной 1,5-6 мкм. Для этого ис­пользуют различные способы: сублимацию/конденсацию, электрохимическое осаждение, трафаретную печать, химичес­кое осаждение из газовой фазы и распыление. Пленки СdТе, по­лученные данными методами,  обладают высокой подвижностью носителей заряда, а СЭ на их ос­нове - высокими значениями КПД, от 10 до 16%.

CuGaSe 2 также весьма интересен как тонкопленочный элемент солнечных батарей. Благодаря запрещенной зоне шириной 1,68 эВ он используется как верхний элемент тандемной солнечной бата­реи с нижним элементом из CulnSe2. Слои CuGaSe2 формируют пу­тем последовательного осаждения термическим испарением тон­ких слоев Ga, Se и Си на поверхность стеклянной подложки, покры­той слоем молибдена толщиной 1 мкм. Далее из получен­ной структуры в установке быстрого термического отжига в течение пяти минут при температуре 550°С получают соединение CuGaSe2.

Одним из перспективных материалов для дешевых солнечных батарей благодаря приемлемой ширине запрещенной зоны (1,4-1,5 эВ) и большому коэффициенту поглощения 104 см-1 явля­ется Cu2ZnSnS4. Его главное достоинство в том, что входящие в не­го компоненты широко распространены в природе и нетоксичны. Однако пока достигнута эффективность преобразования всего в 2,3% при использовании гетероперехода Cu2ZnSnS4 и CdS/ZnO.

Среди СЭ особое место занимают батареи, использующие орга­нические материалы, В частности, КПД СЭ на основе диоксида титана, покрытого органическим красителем, весьма высок --11%. Немаловажно, что подложками в таких элементах могут вы­ступать полимерные пленки.

Основа СЭ данного типа - широкозонный полупроводник, обыч­но ТiO2, покрытый монослоем органического красителя, как прави­ло - цис-(NСS)2бис(4,4''ДИкарбокси-2,2'бипиридин)-рутением (II) (рис.12). Фотоэлектрод такого устройства представляет собой на-нопористую пленку ТiO2 толщиной 1 мкм, осажденную на ТСО на стекле. Отражающим электродом служит тонкий слой Pt, осажден­ный на ТСО на стекле. Пространство между двумя электродами заполняют электролитом, обычно содержащим иодид/трииодид

(I-/Iз). рис. 10

Принцип работы элемента основан на фотовозбуждении краси­теля и быстрой инжекции электрона в зону проводимости ТiO2. При этом молекула красителя окисляется, через элемент идет электри­ческий ток и на платиновом электроде происходит восстановление трииодида до иодида. Затем иодид проходит через электролит к фотоэлектроду, где восстанавливает окисленный краситель.

Для солнечной батареи на эффекте Шотки используют фталоцианин - органический полупроводник р-типа. В нем наиболее привлекают высокая фотопроводимость в видимой области спект­ра и термическая стабильность. Основной недостаток - низкое время жизни носителей вследствие большого числа ловушек. Для повышения времени жизни фталоцианин легируют фуллеренами или 2-, 4-, 7-тринитрофлуореноном, создающими акцепторные уровни.

Фуллерены60) также весьма перспективны для органических солнечных батарей на основе гетероструктур C60/p-Si в связи с их способностью к сильному поглощению в коротковолновой области солнечного спектра. Поликристаллический фуллерен С60 толщи­ной ~1 мкм осаждают на кремниевую подложку в глубоком вакууме. Далее на слой С60 наносят алюминиевые контакты. В качестве зад­него контакта используется сплав Gaxlny на позолоченной подложке.

Термофотовольтаическое производство электроэнергии, т.е. преобразование длинноволнового (теплового) излучения посредством фотовольтаических ячеек было открыто в 1960 году и вызыва­ет все больший интерес, особенно в связи с современными дости­жениями в областисоздания узкозонных полупроводников. В термофотовольтаической ячейке тепло преобразуется в электроэнергию посредством селек­тивных эмиттеров из оксидов редкоземельных элементов -эрбия и иттербия. Эти вещества поглощают инфракрасное излу­чение и вновь излучают его в уз­ком энергетическом диапазоне. Излучение может быть эффек­тивно преобразовано с помо­щью фотовольтаической ячейки с соответствующей шириной за­прещенной зоны. В качестве ма­териала для фотоэлектрической ячейки более всего подходит lnxGa1-xAs,поскольку он позволя­ет добиться необходимой шири­ны запрещенной зоны.

 В типичном многопереход­ном солнечном элементе одиночные фотоэле­менты расположены друг за дру­гом таким образом, что солнеч­ный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наиболь­шей энергией. Пропущенные верхним слоем фотоны проника­ют в следующий элемент с меньшей шириной запрещенной зоны и т.д.

Основное направление исследований в области каскадных эле­ментов связано с использованием арсенида галлия в качестве од­ного или нескольких компонентов. Эффективность преобразования подобных СЭ достигает 35 %. Кроме того, в каскадных элементах широко применяются аморфный кремний, сплавы на его основе (a-Si1-xCx:H, a-Si1-xGex:H), а также CulnSe2.

Каскадная батарея, в которой верхним элементом служит структура на основе GalnP с n-AllnP в качестве окна, далее следует туннельный диод на GaAs для прохождения но­сителей между элементами и нижний элемент из GaAs.

Весьма перспективны каскадные батареи, состоящие из трех элементов с различной шириной запрещенной зоны (рис.13). Верхний слой, поглощающий коротковолновую область сол­нечного спектра, сформирован из сплава на основе a-Si:H с шири­ной оптической щели 1,8 эВ. Для серединного элемента в качест­ве слоя i-типа использован сплав a-SiGe:H с содержанием германия 10-15%. Ширина оптической щели данного слоя (1,6 эВ) иде­альна для поглощения зеленой области солнечного спектра. Нижняя часть СЭ поглощает длинноволновую часть спектра, для этого используется i-слой a-SiGe:H с концентрацией гер­мания 40-50%. Непоглощенный свет отражается от заднего кон­такта на основе Ag/ZnO. Все три элемента каскадной солнечной батареи связаны между собой сильнолегированными слоями, образующими туннельные пере­ходы между соседними элемен­тами.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...