Формация. Произведение формаций
Содержание
Введение 1 Формация. Произведение формаций 2 Операции на классах групп 3 Экраны 3.1 Экраны формации 3.2 Формация с однородным экраном 4 Локальная формация 5 Построение локальных формаций 6 Локальные формации с заданными свойствами Заключение Литература
Введение
Формации, т.е. классы групп, замкнутые относительно фактор-групп и подпрямых произведений, всегда находились в поле деятельности исследователей по теории конечных групп. Однако вплоть до 1963 г. формационное развитие теории конечных групп шло лишь по пути накопления фактов, относящихся к различным конкретным формациям, из которых наиболее популярными были формация разрешимых групп и ее подформации, составленные из абелевых, нильпотентных и сверхразрешимых групп. В курсовой работе рассматривается произведение формаций, операции на классах групп, приводящие к формациям. Рассматриваются локальные формации и экраны. Рассматриваются простейшие свойства локальной формации всех групп с нильпотентным компонентом.
Формация. Произведение формаций
Определение 1.1 Классом групп называют всякое множество групп, содержащее вместе с каждой своей группой и все группы, изоморфные . Если группа (подгруппа) принадлежат классу , то она называется -группой ( -подгруппой). Определение 1.2. Класс групп называется формацией, если выполняются следующие условия: 1) каждая фактор-группа любой группы из также принадлежит ; 2) из всегда следует . Если формации и таковы, что , то называется подформацией формации . По определению, пустое множество является формацией (пустая формация). Множество всех групп является, конечно, формацией. Единичная формация – это непустой класс групп, состоящий лишь из единичных групп. Формациями являются: класс всех -групп, класс всех абелевых групп, класс всех нильпотентных групп, класс всех -групп ( – фиксированное простое число), класс всех нильпотентных -групп, класс всех разрешимых групп, класс всех разрешимых -групп. Мы привели пока лишь примеры тех формаций, за которыми закреплены соответствующие обозначения.
Лемма 1.1. Справедливы следующие утверждения: 1) пересечение любого множества формаций также является формацией; 2) если – некоторое множество формаций, линейно упорядоченное относительно включения , то объединение является формацией. Доказательство осуществляется проверкой. Определение 1.3. Пусть – непустая формация. Обозначим через и назавем - корадикалом группы пересечение всех тех нормальных подгрупп из , для которых . Очевидно, -корадикал любой группы является характеристической подгруппой. -корадикал группы обозначают иначе через и называют -корадикалом. -корадикал будем называть нильпотентным радикалом; понятны также термины разрешимый корадикал, -разрешимый корадикал, - сверхразрешимый корадикал и т.д. -корадикал (или абелев корадикал) – это коммутант группы. Так же как и коммутант, -корадикал сохраняется при гомоморфизмах. Лемма 1.2. Пусть – непустая формация, . Тогда справедливы следующие утверждения: 1) 2) если то 3) если и , то Доказательство. Пусть . Тогда
Отсюда следует, что . С другой стороны,
откуда получаем . Из и следует равенство . Утверждение 1) доказано. Пусть – естественный гомоморфизм группы на Очевидно,
откуда следует равенство . В частности, если , то . Лемма доказана. Определение 1.4. Пусть и – некоторые формации. Если , то положим Если , то обозначим через класс всех тех групп , для которых Класс называется произведением формаций и .
Из определения 1.4 следует, что произведение формаций является пустой формацией тогда и только тогда, когда по крайней мере одна из формаций является пустой. Можно определить произведение нескольких формаций как результат последовательного умножения. Если задан упорядоченный набор формаций причем произведение уже определено, то В частности, если для любого то мы приходим к понятию степени Понятие произведения формаций представляет интерес с точки зрения построения формаций. Теорема 1.1. Произведение любых двух формаций также является формацией. Лемма 1.3. Пусть и – нормальные подгруппы группы . Тогда каждый главный фактор группы -изоморфен либо некоторому главному фактору группы , либо некоторому главному фактору группы Доказательство вытекает из рассмотрения -изоморфизма Теорема 1.2. Пусть – некоторая формация, – класс всех тех групп, все главные факторы которых принадлежат Пусть – объединение формаций Тогда – подформация формации Доказательство. Из леммы 1.3 выводим, что – формация. Из теоремы 1.1 и леммы 1.1 вытекает, что класс является формацией. Если – минимальная нормальная подгруппа группы , то по индукции для некоторого натурального . Но тогда либо , либо – -корадикал группы . Так как , то отсюда вытекает, что , и теорема доказана. Операции на классах групп
Определение 2.1. Всякое отображение множества всех классов групп в себя называется операцией на классах групп. Операции мы будем обозначать, как правило, прямыми большими латинскими буквами. Результат операции , примененной к классу обозначается через Степень операции определяется так: Произведение операций определяется равенствами:
Введем операции следующим образом: тогда и только тогда, когда вкладывается в качестве подгруппы в некоторую -группу; тогда и только тогда, когда вкладывается в качестве нормальной подгруппы в некоторую -группу; тогда и только тогда, когда является гомоморфным образом некоторой -группы; тогда и только тогда, когда совподает с произведением некоторого конечного числа своих нормальных -подгрупп;
тогда и только тогда, когда имеет нормальные подгруппы такие, что
тогда и только тогда, когда является расширением -группы с помощью -группы; тогда и только тогда, когда имеет нормальную подгруппу такую, что Если , то вместо пишут Обратим внимание на тот факт, что если – нормальные подгруппы группы , причем для любого , то Заметим еще, что операцию можно определить с помощью понятия подпрямого произведения. Напомним (см. Каргаполов и Мерзляков [1]), что подгруппа прямого произведения называется подпрямым произведением групп если проекция на совпадает с Легко видеть, что тогда и только тогда, когда есть подпрямое произведение некоторого конечного числа -групп. Определение 2.2. Класс называется замкнутым относительно операции или, более коротко, - замкнутым, если Формацию можно определить теперь как класс групп, который одновременно -замкнут и -замкнут. -замкнутый класс согласно Гашюцу [3] называется насыщенным. -замкнутый класс групп называется гомоморфом. Класс групп называется замкнутым относительно подгрупп (нормальных подгрупп), если он -замкнут (соответственно -замкнут). Лемма 2.1. . Если класс групп содержит единичную группу и -замкнут, то Доказательство. Относительно операций и утверждение очевидно. Пусть – произвольный класс групп. Ясно, что Если , то в найдется нормальная подгруппа такая, что . Группа имеет нормальную подгруппу такую, что и Но тогда Так как , то , а значит, Таким образом, , что и требуется. Пусть . Если , то имеет нормальную -подгруппу такую, что Группа имеет нормальную -подгруппу такую, что . Так как и , то из -замкнутости класса следует, что . Значит, , т.е. . Обратное включение очевидно. Лемма 2.2. Для любого класса справедливо следующее утверждение: Доказательство. Если , то Пусть Если , то , а значит, . Таким образом, . Пусть . Тогда имеет такие нормальные подгруппы , что Группа имеет такие нормальные подгруппы , что Так как , то , что и доказывает равенство
Лемма 2.3. Для любого класса имеет место включение Доказательство. Если , то . Пусть и группа является подпрямым произведением групп , где . Рассмотрим функцию . Функция является гомоморфизмом группы в группу . Ясно, что
есть подпрямое произведение групп , причем . Следовательно, , и лемма доказана. Лемма 2.4. В работе Фишера, Гашюца и Хартли [1] введено следующее понятие, в некотором смысле двойственное определению формации. Определение 2.3. Класс групп называется классом Фиттинга, если он одновременно -замкнут и -замкнут. Класс Фиттинга мы будем в дальнейшем называть иначе радикальным классом. Ввиду двойственности (нормальная подгруппа – фактор-группа) формацию можно было бы назвать корадикальным классом. Определение 2.4. Пусть непустой -замкнутый класс, содержащий 1. Обозначим через и назовем - радикалом группы произведение всех ее нормальных -подгрупп. Классы являются радикальными. -радикал группы – это ее подгруппа Фиттинга -радикал обозначают иначе через и называют -радикалом. -радикал называют разрешимым радикалом; понятны также термины -нильпотентный радикал, -замкнутый радикал и т.д. Класс всех -нильпотентных групп является одновременно радикальным и корадикальным; – это -нильпотентный радикал группы . В дальнейшем мы будем изучать формации, замкнутые относительно тех или иных операций; в частности, будут рассматриваться радикальные формации, т.е. формации, являющиеся одновременно и классами Фиттинга. Сейчас мы обратимся к задаче построение формаций с помощью операций Теорема 2.1. Пусть и – формации, причем либо , либо замкнута относительно нормальных подгрупп. Тогда – формация, совпадающая с произведением Определение 2.5. Пусть – некоторое множество групп. Пусть – пересечение всех тех формаций, которые содержат класс называется формацией, порожденной множеством групп Заметим, что операцию часто обозначают иначе через Если то пишут вместо , причем в этом случае называют формацией, порожденной группой . Теорема 2.2. Для любого класса имеет место равенство: Доказательство. Если , то , и утверждение верно. Пусть . Так как , то класс является -замкнутым. есть класс и по лемме 2.2. Используя это и леммы 2.3 и 2.4, получаем
Последнее означает -замкнутость класса . Итак, – формация, содержащая , так как . Значит, . Обратное включение очевидно. Лемма 2.5. Для любых элементов группы выполняются равенства Если – подгруппы группы , то выполняются следующие утверждения: 1) 2) для любого гомоморфизма группы ; в частности, если группа из нормализует и , то нормализует и
Лемма 2.6 Пусть – подгруппа нильпотентной группы , причем . Тогда Доказательство. Для того чтобы доказать лемму, достаточно установить, что при любом натуральном выполняется включение:
При это верно, так как , а значит, . Предположим, что включение (*) справедливо при некотором . Тогда, используя лемму 2.5, получаем
Тем самым (*) доказано. Теорема 2.3 (Брайант, Брайс, Хартли [1]). Если – такая подгруппа группы , что , то Доказательство. Пусть – нильпотентная нормальная подгруппа группы , а – такая подгруппа из , что . Докажем индукцией по , что . Это верно, если . Поэтому будем считать, что . Рассмотрим следующие подгруппы прямого произведения
Очевидно, подгруппа нормализует и . Обозначим через подгруппу группы , порожденную подгруппами . Поскольку проекции на множители прямого произведения равны , то . Заметим еще, что , где нормальна в и нильпотентна как подпрямое произведение из . Пусть – центр подгруппы , . Легко видеть, что , причем и поэлементно перестановочны; аналогично, и поэлементно перестановочны. Но тогда , абелева и нормальна в . Если , то , где , и если , то , что влечет . Следовательно, . Если абелева, то , и мы имеем
Предположим теперь, что . Ясно, что . Так как
то нильпотентна ступени . Так как , то изоморфна и имеет ступень , а потому согласно лемме 2.6 ее нормальное замыкание в имеет ступень . Так как нормализует и , то нормальна в . Итак, , причем . По индукции
Для группы и ее нильпотентной нормальной подгруппы ступени теорема также верна по индукции. Поэтому
Теорема доказана. Теорема 2.4. (Нейман [1]) Формация, порожденная разрешимой группой, содержит лишь конечное число подформаций. Доказательство. Пусть – подформация формации . Если , то по теореме 2.3 имеет место , что и требуется.
Экраны
Недостатком понятия групповой функции является то, что не всегда уплотнение -центрального ряда нормальными подгруппами является -центральным рядом. Определение 3.1. Отображение класса всех групп в множество классов групп назовем экраном, если для любой группы выполняются следующие условия: 1) – формация; 2) для любого гомоморфизма группы ; 3) . Из условия 2) вытекает, что экран принимает одинаковое значение на изоморфных группах, т.е. является групповой функцией в смысле определения 3.1. Кроме того, видно, что если – экран, то каждый f-центральный ряд после удаления повторений может быть уплотнен до f-центрального главного ряда, а значит, класс групп, обладающих f-центральными рядами, совподает с формацией . Лемма 3.1. Пусть – экран, – группа операторов группы , – некоторая нормальная -допустимая подгруппа из . Если обладает нормальным -допустимым рядом, факторы которого -центральны относительно , то один из таких рядов проходит через . Доказательство. Пусть дан ряд, удовлетворяющий условию леммы:
Пусть . Тогда ряд
будет искомым. В этом нетрудно убедит
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|