Построение локальных формаций
1. Формация всех групп. Формация обладает локальным экраном таким, что для любого простого . 2. Формация единичных групп. Формация имеет пустой экран, который, очевидно, локален. 3. Формация нильпотентных -групп. Пусть – формация всех нильпотентных -групп, – такой локальный экран, что для любого для любого . Очевидно, – минимальный локальный экран формации . 4. Формация -групп. Пусть – формация всех -групп, – такой локальный экран, что для любого для любого . Очевидно, – макcимальный внутрений локальный экран формации . 5. Формация -нильпотентных групп. Пусть – формация всех -нильпотентных групп ( – фиксированное простое число), – такой локальный экран, что для любого простого числа , отличного от . Покажем, что – экран формации . Главный ряд -нильпотентной группы -централен. Пусть . Нужно установить, что -нильпотентна. Пусть – минимальная нормальная подгруппа группы . По индукции -нильпотентна. Если – -группа, то отсюда следует, что и -нильпотентна. Если же -группа, то , т.е. . Если теперь – -подгруппа из , то ввиду подгруппа -нильпотентна, а значит, и -нильпотентна. Тем самым показано, что . Теорема 5.1. В любой -группе подгруппа совпадает с пересечением централизаторов в всех главных -факторов группы . Следствие 5.1.1. В любой группе подгруппа Фиттинга совпадает с пересечением централизаторов в всех главных факторов группы . Следствие 5.1.2. Для любой -разрешимой группы имеет место включение . Следствие 5.1.3. (Фиттинг). для любой разрешимой группы . Следствие 5.1.4. (Чунихин [3]). Коммутант -сверхразрешимой группы -нильпотентен. 6. Формация -замкнутых групп. Пусть – формация всех -замкнутых групп ( – некоторое фиксированное множество простых чисел), – такой локальный экран, что для любого для любого . Покажем, что – экран формации .
Очевидно, . Предположим, что класс не пуст, и выберем в нем группу наименьшего порядка. Тогда имеет единственную минимальную нормальную подгруппу , причем не является -группой. Пусть . Так как , то , а значит, . Поэтому – абелева -группа. Так как -замкнута, то и -замкнута, т.е. имеет нормальную -подгруппу . Ясно, что . Так как , то . Легко видеть, что , а значит, и группа -замкнута. Тем самым показано, что . 7. Формация -дисперсивных групп. Пусть – некоторое линейное упорядочение множества всех простых чисел, – формация всех -дисперсивных групп. Покажем, что локальна. Рассмотрим всевозможные множества простых чисел, обладающие следующим свойством: для всех . Пусть – формация всех -замкнутых групп. Очевидно, . Так как формации локальны, то по лемме 3.4 формация также является локальной. 8. Формация -разрешимых групп. Пусть – формация всех -разрешимых групп, – такой локальный экран, что для любого простого . Нетрудно заметить, что – максимальный внутрений локальный экран формации . В частности, формация является локальной. 9. Формация -сверхразрешимых групп. Пусть – формация всех -сверхразрешимых групп. Обозначим через формацию всех абелевых групп экспоненты, делящей . Построим локальный экран такой, что для любого для любого . Покажем, что . Ясно, что . Пусть , – минимальная нормальная подгруппа группы . По индукции . Если – -группа, то -сверхразрешима. Пусть порядок делится на некоторое число . Тогда, если , то
Отсюда следует, что – -группа. Лемма5.1. Пусть – некоторая неприводимая абелева группа автоморфизмов -группы и . Тогда – циклическая группа порядка, делящего . Кроме того, – наименьшее натуральное число, удовлетворяющее сравнению .
Доказательство. Будем считать, что – аддитивная абелева группа. Тогда можно рассматривать как правое векторное пространство размерности над полем из элементов. Пусть – коммутативное подкольцо кольца , порожденное элементами и . Ввиду условия является неприводимым правым -модулем (определения, связанные с -модулями, см. у Кэртиса и Райнера [1]). По лемме Шура, – тело. Так как коммутативно, то . Легко видеть, что множество всех ненулевых элементов из замкнуто относительно операции умножения и, следовательно, является группой. Поэтому – поле. Так как -модуль неприводим, то для любого ненулевого ; но тогда отображение , является -гомоморфизмом -модуля на . Так как ядро есть идеал поля , то – изоморфизм. Следовательно, . Известно, что мультипликативная группа конечного поля циклическая. Поэтому циклическая и делит . Пусть – наименьшее натуральное число, удовлетворяющее сравнению . Тогда делит . Хорошо известно, что поле порядка содержит подполе порядка . Так как циклическая группа содержит точно одну подгруппу каждого возможного порядка и делит , то . Но тогда и . Лемма доказана. 10. Формация . Пусть – непустая формация, – такой локальный экран, что для любого простого . Применяя следствие 7.1.1 можно увидеть, что – экран формации . В частности, формации и являются локальными формациями. Пусть – локальный экран некоторой подформации из . Применяя леммы 3.3 и 4.3, видим, что является локальным -экраном формации . Таким образом, каждая локальная подформация формации имеет внутренний локальный -экран. В частности, любая локальная подформация формации имеет внутренний локальный -экран.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|