Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Волны рассеивания при падении SH-волны на кровлю высокоскоростной среды

 

Нижняя среда - более плотная и имеет большую скорость распространения волны, чем верхняя:.

 

 и .

 

В соответствии с законом Снеллиуса, угол прохождения всегда больше угла падения и равному ему угла отражения: . При изменении угле падения  от нуля до теоретически возможного предела 90° угол прохождения растет быстрее и становится равным 90° при . В этом случае

 

 и ,

 

где  - критический угол падения. При таком падении проходящая волна не уходит в глубь нижней среды, а скользит вдоль границы со скоростью .Эта скользящая волна порождает в верхней низкоскоростной среде вторичную волну, называемую в сейсморазведке головной или преломленной. На регистрации таких волн основан второй метод сейсморазведки - метод преломленных волн (МПВ), - первым и основным, но вторым по времени возникновения, является метод отраженных волн (МОВ).

При нормальном падении все косинусы равны единице, коэффициент отражения отрицателен, а коэффициент прохождения меньше единицы. Следовательно, в этом случае отраженная волна противоположна падающей по знаку смещений (отражение с потерей полуволны), а проходящая волна имеет меньшую амплитуду, чем волна падающая:

 

при α = 0 и A < 0 и  B < 1 и  = B · u (τ) < u (τ).

 

При критическом угле падения  угол прохождения  и А = 1, В = 1 + А = 2. Отраженная волна имеет ту же амплитуду, что и волна падающая, а проходящая волна по амплитуде вдвое превосходит ее:

 

при  А = 1 и  В = 2 и .

 

Видно, что и при  коэффициент отражения меняет свой знак: при нормальном падении А < 0, а при  А = 1 > 0, и существует угол , при котором А = 0 и , В = 1 и , - отраженной волны нет, есть только проходящая вторичная волна с амплитудой, равной амплитуде падающей волны. Синус этого угла определен ранее, но, так как , формулу для  удобнее записать, умножив числитель и знаменатель подкоренного выражения на - 1:

 

.

 

При дальнейшем увеличении угла падения, когда , коэффициент отражения А стремительно возрастает от 0 при  до 1, при  одновременно и также быстро В растет от 1 до 2. Однако, более существенные изменения коэффициентов А и В и вторичных волн - отраженной и проходящей - происходят, когда угол падения становится больше критического. Если  (напомним, ), в соответствии с законом Снеллиуса:

 

 и

 

синус угле прохождения при закритическом падении становится больше единицы (?!). Это не может быть в области действительных тригонометрических функций. Определим косинус угле прохождения по обычной формуле:

 

, так как .

 

Синусу, большему 1, соответствует чисто мнимый косинус.

Встретившись с этой неожиданной трансформацией косинуса, мы, из осторожности, записали оба возможных знака (±) корня. Установим, какой из них имеет физический смысл. Для этого вспомним описание проходящей волны (в волновой аргумент которой и входит ) и ее спектра:

 

 

Подставим в последнее определение

 

:

 

Наличие мнимой единицы в определении косинуса выводит зависимость от z из функции запаздывания и превращает ее в амплитудный множитель . Если определить , то с ростом z (то есть, при удалении от границы и от предполагаемого источника колебаний) амплитуда гармоники частоты ω неограниченно возрастает:

 

при z → ∞ .

 

Физически это абсолютно невозможно, поэтому из двух знаков мнимого косинуса следует выбрать минус: . Тогда амплитуда вторичной волны, определяемая множителем , стремится к нулю при удалении от границы (z → ∞).

Однако, спектр импульсного сигнала определен на всем бесконечном интервале частот: - ∞ ≤ ω ≤ ∞ и в волновом импульсе присутствуют как гармоники с положительными частотами, так и гармоники с ω < 0. Знак минус в определении  “правильно действует" только для положительных частот. Для отрицательных частот знак минус гаснет и амплитуда гармоники частоты ω < 0 неограниченно возрастает по мере удаления от границы z → ∞. Это - снова нереально.

Чтобы обеспечить затухание всего спектра волны  как для положительных, так и для отрицательных частот, определим:

 

,

 

где sgn (ω) - знаковая функция частоты:

 

.

 

В таком определении амплитудный множитель  обеспечивает затухание гармонических составляющих со всеми частотами: если ω > 0, sgn (ω) = + 1 и  - функция, убывающая с ростом z, если же ω < 0, sgn (ω) = - 1 и  - так же убывающая по мере удаления от границы функция.

Обратим внимание на то, что с ростом абсолютного значения частоты ω затухание ускоряется - чем выше частота гармоники, тем быстрее она затухает с ростом z.

В функции запаздывания спектра проходящей волны  осталась лишь пространственная переменная x: . Эта функция соответствует скольжению плоской волны  вдоль границы со скоростью , меньшей истинной скорости  волны в нижней среде, так как . Эта скользящая с “неправильной" скоростью волна имеет амплитуду, экспоненциально уменьшающуюся с глубиной, вдоль фронта волны. Эти две особенности закритической проходящей волны дают основание для ее специального наименования - она называется неоднородной плоской волной, в соответствии с характером распределения ее амплитуды по фронту.

Неоднородные плоские волны играют главенствующую роль в образовании преломленной (головной) волны, которую рассмотрим несколько позже в отдельном разделе. Здесь подчеркнем одно - все особенности неоднородной волны выявлены в результате анализа лишь волнового аргумента проходящей волны при закритическом падении плоской волны на границу раздела. Вид самой волновой функции  этим анализом не затронут. Поэтому вернемся к исследованию поведения спектральных коэффициентов рассеивания и вторичных волн при закритическом падении первичной волны.

Итак, установлено, что при

 

 где

.

 

Коэффициенты рассеивания А и В в этом случае описываются выражениями:

 

 

Знаком тождества подчеркнута комплексная зависимость коэффициентов рассеивания от частоты, оправдывающая введенное ранее определение А и В как спектральных коэффициентов рассеивания.

В числителе и знаменателе дроби, определяющей А - комплексно-сопряженные выражения: , имеющие одинаковый модуль (так как ) и противоположные по знаку аргументы. Поэтому модуль спектрального коэффициента выражения равен 1:

 

 

и не зависит ни от частоты, ни от угла падения. Фазово-частотный коэффициент отражения как аргумент дроби с комплексно-сопряженными числителем и знаменателем, равен:

 

.

 

Действительная realA и мнимая imageA части спектрального коэффициента отражения (СКО) равны:

 

,

 

где

 

.

 

Используя формулы косинуса и синуса двойного угла (), получим выражения для действительной и мнимой частей СКО в виде:

 

;

.

 

Действительная часть СКО не зависит от частоты, а зависимость мнимой части от нее задается множителем в виде знаковой функции частоты. Обе части СКО являются функциями угла падения. Спектральная характеристика отражения обладает всеми свойствами устойчивой линейной системы - четными амплитудно-частотной характеристикой (модулем СКО) и действительной части СКО, и нечетными фазово-частотной характеристикой (аргументом СКО) и мнимой частью СКО. При этом, четность обеспечивается отсутствием зависимости  и realA от частоты, а нечетность  и imageA - множителем в виде знаковой функции sgn (ω). Таким образом, комплексный спектральный коэффициент отражения может быть записан в виде:

 

.

 

Спектр отраженной волны разделяется на два слагаемых:

 

.

 

В первом слагаемом присутствует спектр первичной волны с амплитудным множителем (весом) ReA (α), независимым от частоты и меняющимся с увеличением угла падения.

Во втором слагаемом - произведение двух частотно-зависимых функций - знаковой  и комплексного спектра первичной волны u (jf) - с амплитудным множителем ImA (α), также изменяющимся с увеличением угла падения.

Так как преобразование Фурье - линейная операция, сам отраженный сигнал также является взвешенной суммой Фурье-трансформант слагаемых своего спектра:

 

.

 

Здесь  - результат обратного Фурье-преобразования знаковой функции частоты sgn (f), u (t) u (jf), а произведение спектров заменено сверткой Фурье-трансформант сомножителей в соответствии со спектральной теоремой свертывания функций.

В теории спектров рассматривалась знаковая функция времени sgn (t) и ее спектр:

 

.

 

Аналогично определяется обратное Фурье-преобразование знаковой функции частоты:

 

.

 

Здесь появился знак минус как следствие противоположных знаков ядер прямого () и обратного () преобразований Фурье.

Тогда отраженный сигнал может быть описан выражением:

 

.

 

Сокращая мнимую единицу и раскрывая символьную запись свертки, получим описание отраженного сигнала при углах падения, превышающих критический угол:

 

.

 

В скобках записано обратное Гильберт-преобразование функции u (t), описывающей первичную волну:

 

.

 

Таким образом, отраженный сигнал за критическим углом падения представляется взвешенной суммой падающего сигнала u (t) и его Гильберт-трансформанты :

 

.

 

Веса слагаемых - ReA (α) и ImA (α) - изменяются при увеличении угла падения. Соответственно, изменяется по форме и суммарный отраженный сигнал .

Проведем анализ зависимости от угла падения α весовых множителей ReA (α) и ImA (α) и структуры суммарной отраженной волны при изменении α от критического угла  до теоретически возможного предела 90°. Как отмечалось, при α =  А () = 1 = ReA (), ImA () = 0. Отраженная волна имеет те ж форму и амплитуду, что и падающая волна:  = .

Как только угол падения превысит критический угол, ReA (α) стремительно уменьшается, а мнимая часть ImA (α) столь же быстро возрастает. Доля первичного сигнала в суммарной отраженной волне быстро уменьшается, и так же быстро растет доля Гильберт-трансформанты падающей волны. При некотором угле падения  действительная часть спадает до 0, а мнимая - возрастает до 1:

 

при α =  ReA () = 0; ImA () = 1.

 

Отраженный сигнал представлен только Гильберт-трансформантой первичной волны: . Угол  находится из условия ReA () = 0:

 

.

 

Синус его равен:

 

 

и не намного превышает , то есть  не намного больше .

Дальнейшее увеличение угла падения (α > ) приводит к перемене знака действительной части и к соответствующему инвертированию знака смещения первичной волны в суммарном отраженном сигнале.

В пределе, при : ReA ; ImA  и .

С увеличением угла падения при  доля падающей волны с инвертированным знаком смещения в суммарной волне растет, а доля Гильберт-трансформанты уменьшается в пределе, при α = 90°, до 0.

При этом отраженный сигнал повторяет по форме и амплитуде колебаний падающую волну с инвертированным знаком смещений. Напомним, что такой же предел был выявлен и в случае  (см. раздел 8.3), что вполне естественно.

Анализ закритических изменений спектрального коэффициента прохождения В и вызванных ими трансформаций неоднородных плоских волн  фактически не нужен, так как имеется связь между коэффициентами рассеивания SH-волны: В = 1 + А, справедливая при любых углах падения.

Для комплексных коэффициентов рассеивания А = ReA + jImA; B = ReB + jImB имеем:

 

ReB + jImB = 1 + ReA + jImA.

 

Видно, что А и В имеют действительные части, различающиеся на единицу, и равные мнимые части:

 

ReB = 1 + ReA; ImB = ImA.

 


Напомним, что связь между А и В получена из первого граничного условия (для упругих смещений):

 

.

 

В соответствии с ним, при любых соотношениях физических свойств контактирующих на границе сред и при любом угле падения первичной SH-волны при z = 0 проходящая волна  представляет собой простую сумму падающей волны u (τ) и отраженной волны .

Поэтому все трансформации отраженной волны в закритической зоне входят составной частью в изменения проходящей волны.

Вне зависимости от угла падения в этой волне всегда присутствует “постоянная" составляющая - первичная, падающая на границу волна, по предположению, не меняющаяся с изменением угла падения.

В заключение приведем цифровые оценки особых углов падения  для границы раздела сред со следующими упругими параметрами:

 

.

 

Это - довольно “сильная” отражающая граница.

Ей может соответствовать, например, граница между обводненной верхней средой (где скорость S-волны резко уменьшена) и “сухим” нижним полупространством.

При нормальном падении (α = 0) SH-волны коэффициенты рассеивания равны:

 

.

 

Отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, и инвертирована по знаку смещения. Проходящая волна ослаблена по амплитуде на четверть в сравнении с падающей волной. Для выбранных параметров сред определим отношения волновых сопротивлений ≈1,667 и скоростей ≈1,414 ( ≈0,707). Используя их, найдем особые углы падения первичной волны:

угол , при котором А = 0, В = 1 и  = 0,

 

 = arcsin ≈38°,7;

 

критический угол , при котором А = 1, В = 2 и

 

:

.

 

угол , при котором ReA = 0, ImA = ImB = ReB = 1 и

 

, :

≈49°,4.

 

Как видно из этих оценок, зона наибыстрейшего и наибольшего изменения спектральных коэффициентов рассеивания (СКР) и вторичных волн весьма узка: ≈10,7. В интервале  коэффициенты А и В возрастают на единицу: А от 0 до 1, В от 1 до 2. Затем, как только угол падения превысит критический, коэффициенты становятся комплексными. В интервале  действительная часть А спадает от 1 до 0 (ReB от 2 до 1), а мнимая часть А и В возрастает от 0 до 1.

Вне зоны () коэффициенты рассеивания ведут себя более спокойно. При изменении  от 0 до  отрицательный коэффициент отражения уменьшается (по модулю) от - 0,25 до 0. В ближней к источнику зоне, при , СКР изменяются незначительно. Соответственно, и вторичные волны в этой зоне изменяются мало.

С увеличением различия свойств контактирующих на границе сред все особые точки () смещаются в сторону меньших углов падения, а интервалы между ними уменьшаются. Наоборот, для границ раздела сред с близкими упругими константами критический угол большой и углы  отдалены от него.

 

Рис.10


Описание изменений СКР SH-волны иллюстрирует (рис.10), на котором построены графики  и импульсоиды первичной волны и ее Гильберт-трансформанты, а также импульсоиды суммарных вторичных волн  для различных углов падения. Так как ReB = ReA + 1, график  снабжен второй осью ординат для  со смещенной на 1 шкалой. График  одновременно является и графиком .

Импульсоиды вторичных волн соответствуют углам падения, отмеченным на шкале оси абсцисс стрелками.

В заключение анализа отметим, что угол падения α определяет удаление х точки приема Р от точки возбуждения 0 (рис.11). Тангенс этого угла равен отношению половины удаления х/2 к эхо-глубине границы h: . Поэтому малые углы падения соответствуют ближней к источнику зоне, а большие - дальней.

 

Рис.11

 

Приведем оценки x/h, соответствующие особым углам для выбранных ранее параметров сред:

 

при  ≈38°,7 ≈1,6;

при ;

при ≈49,4 ≈2,33.

 

Добавим еще оценку границы ближней зоны:

 

при ≈12,8 ≈0,46.

 

Таким образом, область наибольшей стабильности отраженной волны не превышает половины эхо-глубины границы. Наибольшие изменения этой волны начинаются на удалениях, в полтора раза превышающих глубину. В промежуточной зоне с ростом х изменения отраженной волны становятся все более существенными и заметными.


II. Расчётная часть

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...