Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Формирование решений с помощью нейросетей

 

Нейросетевые технологии, в отличие от экспертных систем, предназначены для воспроизведения неосознанных мыслительных усилий человека (например, человек плохо знает, как он узнает цвет предмета). Такого рода технологии используются для распознавания каких-либо событий или предметов. С их помощью можно воспроизвести многочисленные связи между множеством объектов. Принципиальное отличие искусственных нейросетей от обычных программных систем, например экспертных, состоит в том, что они не требуют программирования. Они сами настраиваются, т. е. обучаются тому, что требуется пользователю.

Известны следующие основные сферы применения нейросетей:

1.Экономика и бизнес: предсказание поведения рынков, предсказание банкротств, оценка стоимости недвижимости, автоматическое рейтингование, оценка кредитоспособности, прогнозирование курса валют.

2.Интернет: ассоциативный поиск информации.

3.Автоматизация производства: оптимизация режимов производственного процесса, диагностика качества продукции, предупреждение аварийной ситуации.

Искусственные нейросети состоят из искусственных нейронов. Искусственный нейрон представляет собой математическую модель естественного нейрона, имеющего несколько входов (вектор входных сигналов) и один выход. Этот выход направлен либо к другому нейрону, либо к выходу из нейронной системы. Вектор входных сигналов преобразуется нейроном в выходной сигнал с использование сумматора и специального нелинейного преобразователя.

Связь между нейронами характеризуется интенсивностью (силой возбуждения), называемой также синаптическим весом.

Применение нейросетей предполагает выполнение следующих этапов:

1.Постановка задачи: формирование цели применения нейросети (например, прогнозирование курса ценных бумаг).

2.Обучение нейросети: подготовка обучающих примеров, которые представляют собой уже известные результаты решения задачи без нейросети и предъявление их ей.

3.Эксплуатация сети: сети предъявляется некоторая ситуация, которая либо распознается, либо нет.

Известно два вида обучения: с учителем и без такового.

Преимущества нейросетей.

1.Способность обучаться на примерах без программирования, что позволяет отказаться от поиска каких-либо аналитических зависимостей между входными данными и результатами.

2.Нейросети могут обучаться на неполной, противоречивой и искаженной информации.Для использования нейросетей не требуются профессионалы-математики.

3.Не требуется выполнение условия отсутствия взаимосвязи между входными факторами, как это требуется в регрессионном анализе.

Нейронные сети реализуются либо аппаратным, либо программным способом. Аппаратная реализация возможна в виде нейрокомпьютеров, нейроплат и нейроБИС (больших интегральных схем).

Аппаратная реализация используется там, где необходима высокая скорость обработки межнейронных соединений. При этом их стоимость достаточно высока. Если высокая скорость не требуется, то используется программный аналог нейросети. В оперативной памяти строится модель нейросети, которая может обучаться на примерах.

 

Формирование решений с помощью нечетных множеств

 

Формирование решений на основе нечетких множеств проводится в три этапа:

Построение функций принадлежности, которые соответствуют понятиям критериев оценки.

Определяются значения функций принадлежности по критериям оценки.

Производится свертка информации для выявления лучшей альтернативы на основе операции пересечения нечетких множеств.

Рассмотрим условный пример. Пусть к банку за кредитом обратилось два предприятия, кредитоспособность которых будет оцениваться по трем критериям: коэффициент текущей ликвидности, коэффициент финансирования и рентабельность собственных средств.

Каждый из коэффициентов может рассматриваться в качестве критерия оценки кредитоспособности предприятия. Но понятия «хороший» или «плохой» тот или иной коэффициент нечеткие, поэтому необходимо указать их функции принадлежности. Они равны:

 

Например, число 0,98 получено следующим образом: фактическое значение  для

предприятия  равно 1,52. Ближайшее теоретическое значение функции принадлежности равно 1 при значении данного коэффициента, равном 1,5. Поэтому фактическое и теоретическое значение данного коэффициента будем считать равными, что позволяет использовать значение функции принадлежности, равное 1. Для второго предприятия фактическое значение  равно 2,07. Ближайшее значение функции принадлежности к данному числу равно 0,5. Поэтому, используя его, определяем значения функции принадлежности.

Наличие значений функций принадлежности позволяет выполнить процедуру свертки для выявления наилучшего претендента на выдачу кредита. Для этого вначале выполняется операция пересечения множеств, то есть выбирается минимальное значение функции принадлежности среди значений, отражающих приемлемость коэффициентов по каждому критерию для каждого предприятия в отдельности.

Результирующий вектор, позволяющий выявить претендента на кредитование, получают за счет выполнения операции объединения результатов предыдущей операции, то есть:

Таким образом, выбирается второе предприятие, для которого значение функции принадлежности максимальное и равняется 0,4.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...