Краткие теоретические сведения.
При передаче информационных сигналов, как правило, возникает необходимость их обработки, которая часто осуществляется посредством фильтрации – целенаправленного изменения спектра сигнала, направленного на подавление нежелательных составляющих (шумов, помех) и сохранение (или усиление) информативных составляющих. Так, например, в аппаратуре дальней связи при частотном разделении каналов на приемном конце возникает необходимость выделить из суммарного сигнала сигналы, соответствующие каждому из каналов. Фильтрация сигналов реализуется с помощью специальных частотно-зависимых устройств – электрических фильтров. Их классификация обычно проводится по следующим признакам: по характеру используемых сигналов (аналоговые, цифровые или дискретные) и по виду частотной характеристики (фильтры низких частот (ФНЧ), фильтры верхних частот (ФВЧ), полосно-пропускающие или полосовые (ПФ), полосно-задерживающие, заграждающие или режекторные (РФ)). В свою очередь аналоговые фильтры классифицируются на пассивные и активные. Пассивные фильтры состоят только из пассивных элементов электрических цепей: резисторов, конденсаторов, катушек индуктивности, трансформаторов. Фильтры этого типа хорошо работают на высоких частотах, однако в низкочастотном диапазоне (до 500 кГц) им свойственны существенные недостатки: уменьшается добротность и, наоборот, возрастают габариты и стоимость катушек индуктивности; низкое входное и высокое выходное сопротивления затрудняют согласование фильтра Таким образом, основные недостатки пассивных фильтров обусловлены сложностями изготовления катушек индуктивности, а также трудностями стабилизации параметров фильтров для работы в низкочастотной области.
Активные аналоговые фильтры содержат активные электронные элементы, например транзисторы или операционные усилители, а также резисторы и конденсаторы. Кроме устранения низкотехнологичных катушек индуктивности, применение активных элементов позволяет практически исключить проблему согласования фильтров с внешними устройствами, поскольку необходимые значения входного и выходного сопротивлений достигаются достаточно просто. При исследовании фильтров любых видов наиболее часто применяются АЧХ и фазочастотные характеристики (ФЧХ). АЧХ определяет фильтрующие свойства по амплитуде, проявляющиеся в том, что гармонические составляющие сигнала, имеющие различные частоты, ослабляются фильтром в разной степени. АЧХ строится на основании отношения амплитуд или мощностей сигналов на выходе и входе фильтра. ФЧХ характеризует сдвиг фазы выходного сигнала фильтра по отношению к входному, вызван-ный тем, что составляющие входного сигнала, имеющие раз-личные частоты, будут сдвигаться (задерживаться) фильтром Область частот пропускаемых колебаний, для которых АЧХ фильтра, построенная на основании отношения мощностей, изменяется в пределах не более 0,5 от своего максимального значения, называется полосой пропускания. Таким образом, в пределах полосы пропускания мощность сигнала на выходе фильтра изменяется не более чем в два раза. Для построения АЧХ может использоваться логарифмическая шкала. В этом случае отношение мощностей или амплитуд сигналов указывают в децибелах по следующей формуле:
где
Нетрудно подсчитать, что в пределах полосы пропускания изменение значения На рис. 17 приведены примеры АЧХ для ФНЧ, ФВЧ, ПФ и РФ. Пунктирными линиями показаны идеальные АЧХ, полоса пропускания заштрихована на соответствующем участке оси частот. Из рисунка следует, что реальная АЧХ лишь приближённо представляет (аппроксимирует) идеальную.
Рис. 17. АЧХ различных фильтров
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|