Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

4. У больного желтуха. Какие причины могут привести к этому заболеванию? В чем сущность биохимической диагностики желтухи?




Билет 24

1)Витамин Е и К…

Витамины группы Е (токоферолы) найдены в природных источниках. Все они - метальные производные исходного соединения токола, по строению очень близки и обозначаются буквами греческого алфавита. Наибольшую биологическую активность проявляет α -токоферол. Источники витамина Е для человека - растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток. Суточная потребность взрослого человека в витамине примерно 5 мг. Биологическая роль. По механизму действия токоферол является биологическим антиоксидантом. Он ингибирует свободнорадикальные реакции. Клинические проявления недостаточности витамина Е. Дефицит витамина Е проявляется развитием гемолитической анемии.

Витамины К (нафтохиноны) существует в нескольких формах в растениях как филлохинон (К1), клетках кишечной флоры как менахинон (К2). Источники витамина К - растительные (капуста, шпинат, корнеплоды и фрукты) и животные (печень) продукты. Суточная потребность в витамине взрослого составляет 1-2 мг. Биологическая функция витамина К связана с его участием в процессе свёртывания крови. Он участвует в активации факторов свёртывания крови. Витамин К участвует в реакциях карбоксилирования в качестве кофермента. Основное проявление авитаминоза К - сильное кровотечение, часто приводящее к шоку и гибели организма

 

2)Мочевина как конечный продукт…

Мочевина — химическое соединение, диамид угольной кислоты. Белые кристаллы, растворимые в полярных растворителях (воде, этаноле, жидком аммиаке). Мочевина является конечным продуктом метаболизма белка у млекопитающих. Производные нитрозомочевин находят применение в фармакологии в качестве противоопухолевых препаратов. Анализ на мочевину входит в биохимический анализ крови. Нормы:

· дети до 14 лет — 1, 8—6, 4 ммоль/л

· взрослые до 60 лет — 2, 5—6, 4 ммоль/л

· взрослые старше 60 лет — 2, 9—7, 5 ммоль/л

Синтез мочевины — циклический процесс состоит из пяти реакций, катализируемый пятью отдельными ферментами. Суммарное уравнение: СO2+NH3+2H2O+Аспарат → H2N—CO—NH2+Фумарат. При недостаточной активности ферментов орнитинового цикла возникают гипераммониемии — патологические состояния сопровождающиеся повышением концентрации аммиака в крови.

 

3) Количественное определение глюкозы в крови глюкозооксидазным методом.      Глюкоза окисляется глюкозооксидазой с образованием Н2О2. Перекись водорода образует окрашенное соединение с энзимохромогенным реактивом, интенсивность которого соответствует концентрации глюкозы. Определение на ФЭКе.      3. 3 – 5. 5 ммоль/л

60 - 100 мг%     Гипергликемии наблюдаются при: сахарном диабете, с. Иценко-кушинга, акромегалии, панкреатитах, тиреотоксикозе, феохромоцитоме, шоке. Также при увеличении приема глюкозы в пище, при психическом возбуждении.

Гипогликемии наблюдаются при: мальабсорбции дисахаридов и глюкозы-галактозы, галактоземии, гликогенозах I, II, VI, гипогликемии новорожденных, инсулиновом шоке, ацетономической –рвоте, квашиоркоре, болезни Аддисона, гипофункции гипофиза, щитовидной железы.

 

4. У больного желтуха. Какие причины могут привести к этому заболеванию? В чем сущность биохимической диагностики желтухи?

Для правильной постановки диагноза необходимо определить пигментный состав крови, мочи и кала. При усиленном гемолизе эритроцитов (гемолитическая желтуха) – увеличивается уровень общего билирубина в крови, стеркобилина в кале и уробилина в моче; при нарушении целостности гепатоцитов (паренхиматозная желтуха) - увеличивается уровень общего билирубина в крови, снижается количество стеркобилина в кале и уробилина в моче, появляется в моче прямой билирубин; при нарушении оттока желчи (обтурационная желтуха) - увеличивается уровень общего билирубина в крови, отсутствует стеркобилин в кале и уробилин в моче, а темная окраска мочи обусловлена большой концентрацией прямого билирубина.

 

Билет 25

1)Гормоны-регуляторы обм. процессов…

Гормоны – вещества органической природы, вырабатывающиеся в специализированных клетках желез внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции.

В это определение необходимо внести соответствующие коррективы в связи с обнаружением типичных гормонов млекопитающих у одноклеточных (например, инсулин у микроорганизмов) или возможностью синтеза гормонов соматическими клетками в культуре ткани (например, лимфоцитами под действием факторов роста). Гормоны классифицируют в зависимости от места их природного синтеза, в соответствии с которым различают гормоны гипоталамуса, гипофиза, щитовидной железы, надпочечников, поджелудочной железы, половых желез, зобной железы и др. Современная классификация гормонов, основанной на их химической природе. В соответствии с этой классификацией различают три группы истинных гормонов:

1) пептидные и белковые гормоны,

2) гормоны – производные аминокислот

3) гормоны стероидной природы.

Четвертую группу составляют эйкозаноиды – гормоноподобные вещества, оказывающие местное действие.

Пептидные и белковые гормоны включают от 3 до 250 и более аминокислотных остатков. Это гормоны гипоталамуса и гипофиза (тиролиберин, соматолиберин, соматостатин, гормон роста, кортикотропин, тиреотропин), а также гормоны поджелудочной железы (инсулин, глюкагон). Гормоны – производные аминокислот в основном представлены производными аминокислоты тирозина. Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников, и гормоны щитовидной железы (тироксин и его производные). Гормоны 1-й и 2-й групп хорошо растворимы в воде. Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды), половыми гормонами (эстрогены и андрогены), а также гормональной формой витамина D. Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой), представлены тремя подклассами соединений: простагландины, тромбоксаны и лейкотриены. Эти нерастворимые в воде и нестабильные соединения оказывают свое действие на клетки, находящиеся вблизи их места синтеза. Гормоны первого типа связываются поверхностными рецепторами, расположенными на плазматической мембране. Различают три вида взаимодействия гормонов с плазматической мембраной. При взаимодействии первого вида гормонрецепторный комплекс, находящийся на поверхности клеток, вызывает образование так называемого второго посредника — циклического аденозин-3, 5-монофосфата (цАМФ), и последующие действия гормона опосредуются цАМФ. Этот механизм характерен для некоторых белковых гормонов и биогенных аминов. При взаимодействии второго вида рецептор клеточной поверхности индуцирует продукцию или высвобождение иных вторых посредников, например кальция. Этот механизм характерен для некоторых нейротрансмиттеров и РТГ. При взаимодействии третьего вида комплекс поверхностный рецептор — гормон интернализуется внутрь клетки. К последней категории гормонов относится инсулин. Некоторые гормоны, такие как стероидные гормоны и гормоны щитовидной железы, по свойствам являются гидрофобными. В плазме крови для их транспортировки используются специальные белки-транспортеры. В комплексе с этими белками они не способны взаимодействовать с мембранными рецепторами, но способны отрываться от них и диффундировать через клеточную мембрану внутрь клетки. После перехода в цитозоль гормоны немедленно подхватываются другими белками, которые уже являются рецепторами. Комплекс гормон-рецептор в некоторых случаях дополнительно модифицируется и активируется. Далее он проникает в ядро, где может связываться с ядерным рецептором. В результате гормон приобретает сродство к ДНК. Связываясь с гормон-чувствительным элементом в ДНК, гормон влияет на транскрипцию определенных генов и изменяет концентрацию РНК в клетке и, соответственно, количество определенных белков в клетке

2)Распад гемма…

Продолжительность жизни эритроцитов составляет 120 дней, затем они разрушаются (состарившиеся эритроциты фагоцитируются макрофагами, главным образом в селезенке, а также в печени и костном мозге; в микросомальной фракции ретикуло-эндотелиальной системы клеток) и освобождается гемоглобин. В организме человека в течение 1 ч разрушается примерно 100-200 млн эритроцитов. Гем повторно не используется: он распадается с образованием железа и желчных пигментов; железо реутилизируется, а желчные пигменты выводятся из организма. Распад гемоглобина в печени начинается с разрыва a-метиновой связи между I и II кольцами порфиринового кольца, т. е окисляется один из метеновых мостиков тетрапиррольной структуры гемма, углерод метеновой группы превращается в оксид углерода СО. Этот процесс катализируется НАДФ-содержащей оксидазой ЭПР (гем-оксигеназой) с помощью кислорода и НАДФН и приводит к образованию зеленого пигмента вердоглобина (холеглобина). Интенсивный цвет гема и других порфиринов является результатом сопряжения многочисленных двойных связей, которые образуют две резонансно стабилизированные (мезомерные) системы. Основное место образования билирубина − печень, селезенка и, по-видимому, эритроциты (при распаде их иногда разрывается одна из метановых связей в протопорфирине). Образовавшийся во всех этих клет­ках билирубин поступает в печень, откуда вместе с желчью попадает в желчный пузырь. Билирубин, образовавшийся в клетках системы макрофагов, называется свободным, или непрямым, билирубином, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови и для его определения в крови необходимо предварительное осаждение белков спиртом и только после этого билирубин вступает во взаимодействие с диазореактивом. Так как билирубин нерастворим в воде, плохо растворим в плазме, его транспорт в крови осуществляется в комплексе с альбумином. Повышенный уровень билирубина (> 10 мг/л) называется гипербилирубинемией. Билирубин диффундирует из крови в периферические ткани и окрашивает их в желтый цвет. Это особенно легко заметить на белой конъюктиве глаза, в таком случае говорят о желтухе.

3. Количественное определение пировиноградной кислоты в сыворотке крови.    Пировиноградная кислота в щелочной среде дает с салициловым альдегидом оранжевое окрашивание, пропорциональное содержанию пирувата. Оптическая плотность раствора определяется на ФЭКе.         0. 3 – 0. 9 мг%

34 – 102 ммоль/л Пировиноградная кислота является продуктом метаболизма углеводов, аминокислот, глицерина в клетке. Увеличение количества пирувата в крови наблюдается при тканевой гипоксии и связано с торможением ее окислительного декарбоксилирования и дальнейшего окисления в ЦТК. Увеличение: при гиповитаминозах В1, В2, В3, В5, ИБС.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...