Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Разнообразие форм маскирующих покрытий

 

Сейчас скрытие уже теоретически осуществимо на оболочках произвольной двумерной формы, а именно в сечении трёхмерной модели. Рассмотрим их классификацию. Изначально рассматриваемый метод, как уже упоминалось, базировался на сферической оболочке (см. гл. 2 § 1). Дальнейшее развитие метода, как и следовало ожидать, привело к появлению многих других форм.

Одно из простейших покрытий с формой эллиптического цилиндра рассмотрено в работе [6].

 

Распределение нормированной амплитуды электрического поля для различных углов падения излучения на эллиптическую оболочку: (а) 0°, (б) 90°, (в) 30°, (г) 45°

 

Для расчета его параметров используется линейное преобразование координат эллиптического цилиндра , сжимающее сплошной эллиптический цилиндр в цилиндр с полостью:

 

, , . (2.3.1)

 

Направление падающего излучения для такой оболочки не безразлично из-за меньшей степени симметрии чем, например, у сферы. Из рисунка 2.3.1 видно, что поле после прохождения препятствия имеет наиболее близкую исходному структуру при нулевом угле падения излучения.

Произвольный цилиндр – оболочка-цилиндр с произвольным сечением. В общем случае не существует преобразования, переводящего произвольную односвязную область в подобную ей двусвязную. В таком случае  и  задают отдельно для каждой подобласти и используют отдельное преобразование для каждой из них. Например, цилиндрическая оболочка квадратного сечения (рис. 2.3.2), параметры которого рассчитаны в [7].

Для разбиения гладких оболочек на сектора их аппроксимируют кривыми Безье второго порядка. Эти кривые могут представлять собой любые канонические сечения (эллипсы, параболы, гиперболы), в зависимости от параметров. Для того чтобы достаточно точно аппроксимировать гладкую кривую, потребуется ломанная, состоящая из нескольких сотен отрезков, а кривых может понадобиться и две, как, например, для аппроксимации формы сердца. Параметрические уравнения кривой второго порядка по трём точкам  и трем параметрам (весам)  имеют вид [4]:

 

, (2.3.2)

 

. (2.3.3)

 

Кроме уже исследованной сферической формы оболочки из трёхмерных моделей появилась ещё и модель эллипсоида вращения [8]. Пока решения задачи о рассеянии на оболочках произвольной формы не найдено, что связано с трудностями моделирования таких задач.

 


Координатное преобразование для цилиндрической оболочки квадратного сечения: для каждого сектора, выделенного на рисунке а, делается своё преобразование координат

 

 


Заключение

 

Итак, определившись с преобразованием координат для маскирующей оболочки, находим распределение её параметров  и . Затем, разложив при помощи БПФ падающую волну на элементарные плоские волны, определяем амплитудные коэффициенты. Далее, используя граничные условия, вычисляем поля распределения рассеянных волн и волн внутри рассеивателя. Найденные поля и есть решение поставленной задачи, которое в дальнейшем может быть также представлено графически. Варьируя изначальные параметры оболочки  и  можно тем самым приближать модель к реальным условиям и рассчитывать сечение рассеяния с учетом потерь и дисперсии материала.

В дальнейшем хотелось бы смоделировать решение для определённой оболочки, рассчитав её параметры, построить графики решений для этих оболочек. В дальней перспективе – написать программу, рассчитывающую сами поля, имея в качестве входящих значений параметры оболочки. Включить в неё функцию построения графиков решений. Подбирать оболочки и варьировать их параметры в поисках наиболее удачных.

 

 


Список литературы

 

1. Leung Tsang, Jin Au Kong, Kung-Hau Ding «Scattering of electromagnetic waves: theories and applications», «A Wiley-lnterscience» (2000);

2. W.H. Press, S.A. Teukolsky, W.T. Vetterling, Cambridge university press, New York (2002);

3. Pendry J B, Schurig D, Smith D R Science 312 1780 (2006);

4. А.Е. Дубинов, Л.А. Мытарева «Маскировки материальных объектов методом волнового обтекания», УФН (май 2010);

5. Cummer S A et al. Phys. Rev. E 74 036621 (2006);

6. Ma H et al. Phys. Rev. A 77 013825 (2008);

7. Rahm Met al. Photon. Nanostruct. Fund. Appl. 6 87 (2008);

8. Luo Y et al. Phys. Rev. B 78 125108 (2008);

9. A VNovitsky, «Matrix approach for light scattering by bianisotropic cylindrical particles», J. Phys.: Condens. Matter 19 (2007);

10. Г. Нуссбаумер, «Быстрое преобразование Фурье и алгоритмы вычисления свёрток», Москва, «Радио связь» (1985);

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...