Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Определение жесткостей элементов рамы

Длину стоек, вводимых в расчет, принимаем равной высоте этажа hэт=3.3 м.

Средняя расчетная длина ригелей:

 

l0=(l01+l02)/2=(6200+6400)/2=6300 мм=6.3 м.

 


Расстояние от центра тяжести сечения до нижней грани сечения ригеля:

 

y=S/Ap=0.090/0.286=0.3147 м,

 

где Ap=bp*hp=0.3*0.7=0.286 м2.

S=bp*hp2/2+2*0,02*hпл*0,5*(hp-hпл+hпл/3)+2*0,17*0,1*(hp-hпл-0,05)+2*0,17*(hp-hпл-0,1)2*0,5*2/3=0.3*0.72/2+2*0,02*0.4*0,5*(0.7-0.4+0.4/3)+2*0,17*0,1*(0.7-0.4-0,05)+2*0,17*(0.7-0.4-0,1)2*0,5*2/3=0.090 м3

статический момент относительно нижней грани сечения.

Определим жесткости ригеля (1), средних стоек (2) и крайних стоек (3), а также их соотношения.

1) Момент инерции сечения ригеля относительно центра тяжести:

 

Ip=bp*hp3/12+bp*hp*(hp/2-y)2=0.3*0.73/12+0.3*0.7*(0.7/2-0.3147)2=0.00884 м4.

 

Погонная жесткость ригеля (ригель из бетона класса B25, бетон подвергнут тепловой обработке, Eb=27000 МПа):

 

ip=Eb*Ip/l0=27*103*0.00884/6.3=37872 кН*м.

 

2) Момент инерции сечения средней стойки:

 

Iсрs3=bсрcol*hсрcol3/12=0.4*0.63/12=0.0072 м4.

 

Погонная жесткость средних стоек (колонна из бетона класса B30, бетон подвергнут тепловой обработке Eb=29000 МПа):

 

i3s=i’3s=Eb*Iсрs3/hэт=29000*103*0.0072/3.3=63273 кН*м.


Соотношение жесткостей:

 

η3=(i3s+1,5*i’3s)/ip=(63273+1,5*63273)/37872=4.177.

 

3) Момент инерции сечения крайней стойки:

 

Iкрs4=bкрcol*hкрcol3/12=0.4*0.43/12=0.00213 м4.

 

Погонная жесткость крайних стоек (колонна из бетона класса B30, бетон подвергнут тепловой обработке Eb=29000 МПа):

 

i4s=i’4s=Eb*Iкрs4/hэт=29000*103*0.00213/3.3=18747 кН*м.

 

Соотношение жесткостей:

 

η4=(i4s+1,5*i’4s)/ip=(18747+1,5*18747)/37872=1.238.

 

Расчетная схема и статический расчет поперечной рамы

 

Расчетная схема поперечной рамы изображена на рис. 2.3.

 

Рис. 2.3. Расчетная схема поперечной рамы.

 

Статический расчет поперечной рамы проведем в программе RAMA2. Исходные данные для выполнения расчета сведены в таблицу 2.

Таблица 2.

Исходные данные для программы RAMA2.

Величина l01 l02 Pgпер PVпер η3 η4
Обозначение в программе L01 L02 Pgпер Pvпер K1 K2
Значение 6.2000 6.4000 30,6830 94.5400 4.1770 1.2380

 

╔═══════════════════════════════════════════════════════════════════════╗

║ Исходные данные ║

╠═══════════╦═══════════╦═══════════╦═══════════╦═══════════╦═══════════╣

║ L01 ║ L02 ║ Pgper ║ Pvper ║ K1 ║ K2 ║

║ [м] ║ [м] ║ [кН/м] ║ [кН/м] ║ ║ ║

╠═══════════╬═══════════╬═══════════╬═══════════╬═══════════╬═══════════╣

║ 6.2000║ 6.4000║ 30.6830║ 94.5400║ 4.1770║ 1.2380║

╚═══════════╩═══════════╩═══════════╩═══════════╩═══════════╩═══════════╝

 

╔═════════════════════════════════════════════════════════════════════╗

║ Изгибающие моменты в ригеле [кН/м] ║

╠═════╦═══════╦═══════╦═══════╦═══════╦═══════╦═══════╦═══════╦═══════╣

║ ║ M A ║ M1 ║ M2 ║ M3 ║ M BL ║ M BP ║ M4 ║ M5 ║

╠═════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╣

║ 1+2 ║-370.04║ 84.93║ 239.04║ 92.31║-355.27║-195.84║ -78.01║ -38.74║

╠═════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╣

║ 1+3 ║ -57.79║ 12.03║ 8.15║ -69.46║-220.78║-386.36║ 94.49║ 254.78║

╠═════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╣

║ 1+4 ║-307.31║ 95.20║ 196.87║ -2.31║-502.35║-497.22║ -16.36║ 143.93║

╚═════╩═══════╩═══════╩═══════╩═══════╩═══════╩═══════╩═══════╩═══════╝

 

╔═══════════════════════════════════════════════════════╗

║ Поперечные силы в ригеле [кН] ║

╠═════════════╦═════════════╦═════════════╦═════════════╣

║ Q A ║ Q BL ║ Q BP ║ Q CL ║

╠═════════════╬═════════════╬═════════════╬═════════════╣

║ 390.5728║ -385.8098║ 98.1856║ -98.1856║

╠═════════════╬═════════════╬═════════════╬═════════════╣

║ 68.8292║ -121.4054║ 400.7136║ -400.7136║

╠═════════════╬═════════════╬═════════════╬═════════════╣

║ 356.7342║ -356.7342║ 400.7136║ -400.7136║

╚═════════════╩═════════════╩═════════════╩═════════════╝

 

╔═══════════════════════════════════════════════════════════════════════╗

║ Изгибающие моменты в колоннах [кН/м] ║

╠═════╦══════════╦══════════╦══════════╦══════════╦══════════╦══════════╣

║ ║ M AB ║ M AH ║ M A0 ║ M BB ║ M BH ║ M B0 ║

╠═════╬══════════╬══════════╬══════════╬══════════╬══════════╬══════════╣

║ 1+2 ║ 148.0145║ -222.0217║ 111.0108║ -63.7738║ 95.6606║ -47.8303║

╠═════╬══════════╬══════════╬══════════╬══════════╬══════════╬══════════╣

║ 1+3 ║ 23.1171║ -34.6757║ 17.3379║ 66.2340║ -99.3509║ 49.6755║

╠═════╬══════════╬══════════╬══════════╬══════════╬══════════╬══════════╣

║ 1+4 ║ 122.9247║ -184.3871║ 92.1936║ -2.0516║ 3.0774║ -1.5387║

╚═════╩══════════╩══════════╩══════════╩══════════╩══════════╩══════════╝


Способ выравнивания – Луговой

 

╔══════════════════════════════════════════════════╗

║ Выравненные изгибающие моменты в ригеле [кН/м] ║

╠═════╦════════╦════════╦════════╦════════╦════════╣

║ ║ M A ║ M2 ║ M BL ║ M BP ║ M5 ║

╠═════╬════════╬════════╬════════╬════════╬════════╣

║ 1+2 ║ -370.04║ 239.04║ -355.27║ -195.84║ -38.74║

╠═════╬════════╬════════╬════════╬════════╬════════╣

║ 1+3 ║ -57.79║ 8.15║ -220.78║ -386.36║ 254.78║

╠═════╬════════╬════════╬════════╬════════╬════════╣

║ 1+4 ║ -307.31║ 254.86║ -386.36║ -386.36║ 199.35║

╚═════╩════════╩════════╩════════╩════════╩════════╝

 

Перераспределение усилий, построение огибающих эпюр

 

Рис. 2.4. Эпюры изгибающих моментов и поперечных сил в упругой стадии для различных комбинаций загружения ригелей.

Выравнивание для сочетания нагрузок 1+2.

1) Условия MBL>MA, MBL>M2 не выполняются, перераспределение невозможно.

Выравнивание для сочетания нагрузок 1+3.

 

1) ∆М=0.5*(MBP5)=0.5*(368.36-254.78)=56.79 кН*м.

2) 0,3*MBP=0,3*368.36=110.508 кН*м.

3) Принимаем ∆М=56.79 кН*м.

 

Выравнивание для сочетания нагрузок 1+4.

Максимальный момент в Мmax=502.35 кН*м первом пролете.

Перераспределение начнем с первого пролета:

1) ∆М=0.75*(502.35-307.31)=146.28 кН*м.

2) 0,3*Мmax=0,3*502.35=150.705 кН*м.

3) Принимаем в первом пролете ∆М=146.28 кН*м.

4) Принимаем во втором пролете ∆М=141.15 кН*м.

 

Рис. 2.5. Огибающие эпюры.

Вычисление продольных сил в колоннах первого этажа

 

Нагрузка от собственной массы крайней и средней колонн:

 

Nсcolкр=bcolкр*hcolкр*ΣHcolcol*g*γfn=0.4*0.4*19.8*2.5*9,81*1.1*0.95=81.191 кН,

Nсcolср=bcolср*hcolср*ΣHcolcol*g*γfn=0.4*0.6*19.8*2.5*9,81*1.1*0.95=121.787 кН,

 

где ΣHcol=hэт*nэт=3.3*6=19.8 м – суммарная высота колонны,

ρcol=2.5 т/м3 – плотность бетона колонны.

Нагрузка от остекления:

 

Nост=lост*ΣHостостfn=5.8*7.2*0.4*1,1*0,95=17.456 кН,

 

lост=B=5.8 м – шаг рам,

ΣHост=1,2*nэт=1,2*6=7.2 м суммарная высота остекления,

ρост=0.4 кН/м2 – вес 1 м2 остекления.

Нагрузка от навесных стеновых панелей:

 

Nп=bп*lп*ΣHпп*g*γfn=0.3*5.8*12.6*9,81*1*1,2*0,95=245.185 кН,

 

где bп=0.3 м – толщина стеновой панели,

lп=B=5.8 м – длина панели (шаг рам),

 

ΣHп=ΣHcol-ΣHост=19.8-7.2=12.6 м – суммарная высота стеновых панелей,

 

ρп=1 т/м3 – плотность бетона стеновой панели.

Суммарная нагрузка от навесных стеновых панелей и остекления:

 

Nст=Nп+Nост=245.185+17.456=252.385 кН.

 

Продольная сила, действующая соответственно на крайнюю и среднюю колонны:


Nкрcol=Nсcolкр+Pпок*l01/2+(nэт-1)*Pпер*l01/2+Nст=81.191+44.564*6.2/2+(6-1)*126.428*6.2/2+252.385=2431.352 кН,

Nсрcol=Nсcolср+Pпок*(l01+l02)/2+(nэт-1)*Pпер*(l01+l02)/2=

=121.787+44.564*(6.2+6.4)/2+(6-1)*126.428*(6.2+6.4)/2=4385.008 кН.


Проектирование панели перекрытия

 

Назначение размеров и выбор материалов. Сбор нагрузок на продольные ребра. Расчетная схема. Определение усилий

Проектируем ребристую панель перекрытия с предварительно напряженной арматурой.

Продольное ребро свободно опирается на ригель и рассматривается как балка, свободно опертая на двух опорах и загруженная равномерно распределенной нагрузкой.

 

Рис. 3.1. Конструктивная и расчетная схемы панели и эпюры усилий.

 

Принимаем следующие размеры:

- зазор между гранью ригеля и торцом плиты принимаем d=30 мм;

- длина площадки опирания: lоп=100 мм;

- длина плиты lпл=B-bp-2*d-2*d=5800-300-2*30-2*20=5400 мм;

- высота продольного ребра – 400 мм;

- ширина продольного ребра внизу –70 мм;

- ширина продольного ребра вверху –100 мм;

- ширина поперечных ребер внизу – 50 мм;

- ширина поперечных ребер вверху – 70 мм;

- толщина полки hf’=50 мм.

- конструктивная ширина основной панели:

 

bf=(L-n*d)/n=(6400-4*30)/4=1570 мм,

 

где n=4 шт – количество плит в пролете,

d=30 мм – зазор между гранями продольных ребер панелей.

- номинальная ширина панелей:

а) основной bf’=bf+d=1600 мм,

б) доборной bfдоб=bf’/2=800 мм.

Материалы плиты:

- тяжелый бетон класса B25; γb2=0.9; Rb=14.5 МПа, Rbt=1.05 МПа, Rb,ser=18.5 МПа, Rbt,ser=1.6 МПа, Eb=27000 МПа, подвергнут тепловой обработке;

- напрягаемая арматура класса A800: Rs=680 МПа, Rs,ser=785 МПа, Es=190000 МПа;

- ненапрягаемая продольная арматура класса A400: 2 каркаса, диаметры ds=dsc=8 мм, As=Asc=100.5 мм2, Rs=R=355 МПа, Rs,ser=390 МПа, Es=E=200000 МПа;

- ненапрягаемая поперечная арматура класса B500, Rsw=260 МПа, Rs,ser=395 МПа, Es=170000 МПа;

- полка панели армируется сетками из арматуры класса B500, Rs=260 МПа, Rs,ser=395 МПа, Es=170000 МПа.

Способ напряжения арматуры – электротермический на упоры формы.

Расчетный пролет панели:

lр=lпл-lоп=5400-100=5300 мм.

 

Полная нормативная погонная нагрузка на панель перекрытия:

 

Pn=gперn*bf’=18.214*1.6=29.142 кН/м.

 

Полная расчетная погонная нагрузка на панель перекрытия:

 

P=gпер*bf’=20.534*1.6=32.855 кН/м.

 

Временная расчетная погонная нагрузка на панель перекрытия:

 

Pv=ΣVпер*bf’=16.3*1.6=26.080 кН/м.

 

Максимальные усилия:

 

Мmax=P*lр2/8=32.855*5.32/8=115.361 кН*м;

Qmax=P*lр/2=32.855*5.3/2=87.065 кН.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...