Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

52. Тромбоцитопоэз: стадии и их морфологическая характеристика. Роль эндомитоза в образовании мегакариоцитов.




52. Тромбоцитопоэз: стадии и их морфологическая характеристика. Роль эндомитоза в образовании мегакариоцитов.

Тромбоцитопоэз (образование тромбоцитов в организме) протекает в костном мозге и включает следующие этапы: колониеобразующая клетка мегакариоцитарная (КОК-мег) -» промегакариобласт -> мегакариобласт -> промегакариоцит -> зрелый мегакариоцит -» тромбоцитогенный мегака-риоцит -> тромбоциты (рис. 7. 7). Истинные митозы, т. е. деление клеток, присущи только КОК-мег. Для промегакариобластов и мегакариобластов характерен эндомитоз, т. е. удвоение ДНК в клетке без ее деления. После остановки эндомитоза, в основном после 8-, 16-, 32-, 64-кратного удвоения ДНК, мегакариобласт начинает дифференциацию до тромбоцитарного мегакариоцита, образующего тромбоциты Митоз и дифференциацию КОК-мег активирует гемопоэтический цитокин — тромбопоэтин (тромбоцитопоэтин) при взаимодействии с интерлейкином-3. Этот гуморальный фактор стимулирует также эндомитоз мегакариоцитов, он необходим для нормального созревания цитоплазмы мегакариоцита и формирования в ней тромбоцитов. Стимулируют образование тромбоцитопоэтина уменьшение мегакариоцитов и их предшественников в костном мозге, а также тромбоцитопения, вызванная усиленным использованием тромбоцитов при формировании тромба (воспаление, необратимая агрегация тромбоцитов). Активированные тромбоциты и селезенка выделяют в кровь гуморальный ингибитор пролиферации КОК-мег, а также немитотической стадии развития мегакариоцитов (эндомитоза) и созревания цитоплазмы мегакариоцитов. Это гликопротеин, массой 12—17 кДа.

 В костном мозге тромбоцитарные мегакариоциты локализованы на поверхности синусного эндотелия. Часть их цитоплазматических отростков на 1—2 мкм проникает в просвет синусоида костного мозга через эндотелий и фиксирует мегакариоцит на эндотелии, выполняя функцию «якоря». Вторая часть отростков, представленных цитоплазматическими лентами до 120 мкм в длину и числом 6—8, проникает через эндотелий в просвет синусоида костного мозга. Эти отростки называются протромбоцитами. В просвете синусоида цитоплазма протромбоцита после локальных сокращений разрывается и он образует до 1000 тромбоцитов, поступающих с кровью из просвета синусоидов в русло циркулирующей крови. Однако сами протромбоциты или их фрагменты, содержащие до 100 тромбоцитов, также могут выходить из синусоида костного мозга в кровь. Они достигают мик-роциркуляторного русла легких, где из них освобождаются тромбоциты. Поэтому количество тромбоцитов оказывается более высоким в легочных венах, чем в легочной артерии. Количество тромбоцитов, образовавшихся в легких, может достигать 7—17 % от массы тромбоцитов в крови. Костный мозг человека содержит около 15 • 106 мегакариоцитов на 1 кг массы тела. Дневная продукция тромбоцитов у человека 66 000 +14 600 в 1 мкл крови. В среднем мегакариоцит высвобождает до 3000 тромбоцитов. Количество тромбоцитов в крови взрослого человека достигает 150— 375 • 109/л; у детей — 150—250 • 109/л. Общая популяция тромбоцитов представлена циркулирующими в крови (70 %) и находящимися в селезенке (30 %). Накопление тромбоцитов в селезенке возникает из-за их медленного движения через извилистые селезеночные корды, занимающему до 8 мин. Сокращение селезенки (например, вызванное адреналином) освобождает депонированные тромбоциты в общий кровоток. Удаление селезенки у человека, устраняющее депонирование тромбоцитов, повышает число тромбоцитов в крови у спленэктомированных индивидуумов. Напротив, увеличение селезенки (спленомегалия) вызывает рост селезеночного депо тромбоцитов у больных и, как следствие этого, тяжелую тромбоцитопению. В результате у таких больных имеет место повышенная кровоточивость. Тромбоцитопенией называют содержание тромбоцитов в крови взрослого ниже 150 • 109/л. Продолжительность жизни тромбоцитов 6, 9— 9, 9 дня. Стареющие клетки разрушаются макрофагами в костном мозге и, в меньшей степени, в селезенке и печени.

53. Комплекс Гольджи: микроскопическое, субмикроскопическое строение, функции.

Комплекс Гольджи - сложно организованная мембранная органелла, образованная тремя основными элементами - (1) стопкой уплощенных мешочков (цистерн), (2) пузырьками и (3) вакуолями, или секреторными пузырьками. Комплекс этих элементов называется диктиосомой (от греч. diktyon - сеть); в некоторых клетках имеются множественные диктиосомы (до нескольких сотен). В специализированных секреторных клетках комплекс Гольджи располагается надъядерно под апикальной частью клетки, через которую происходит выделение секрета механизмом экзоцитоза. Нередко он лежит у ядра вблизи центриолей, в некоторых клетках его компоненты рассеяны по всей цитоплазме.

1. Цистерны имеют вид изогнутых дисков (" блюдец" ) диаметром 0, 5-5 мкм и образуют стопку из 3-30 элементов, разделенных пространством 15-30 нм; выпуклой стороной стопка обычно обращена к ядру, вогнутой - к плазмолемме. Каждая группа 18 цистерн внутри стопки отличается особым составом ферментов, определяющим характер реакций процессинга белков. Периферические отделы цистерн несколько расширены от них отщепляются пузырьки и вакуоли. Механизм, удерживающий стопку в виде единого образования, неизвестен. При наличии в клетке множественных диктиосом их цистерны связаны друг с другом системой анастомозирующих и ветвящихся трубочек.

2. Пузырьки - сферические окруженные мембраной элементы диаметром 40- 80 нм с содержимым умеренной плотности; образуются путем отщепления от цистерн.

 3. Вакуоли - крупные (диаметр – 0, 1-1, 0 мкм), окруженные мембраной сферические образования, отделяющиеся от цистерны на зрелой поверхности комплекса Гольджи в некоторых железистых клетках. Они содержат секреторный продукт умеренной плотности, находящийся в процессе конденсации (конденсирующие вакуоли). Полярность комплекса Гольджи. Комплекс Гольджи представляет собой поляризованную структуру, в которой выделяют две поверхности, обладающие структурными и функциональными различиями: (а) цис- (от лат. cis - по эту сторону), незрелую, формирующуюся - выпуклой формы, обращенную к ЭПС и связанную с системой мелких (транспортных) пузырьков, отщепляющихся от ЭПС; (б) транс- (от лат. trans - по ту сторону), зрелую - вогнутой формы, обращенную к плазмолемме и связанную с отделяющимися от цистерн вакуолями. Между цистернами цис- и транс-поверхностей располагаются цистерны медиальной части комплекса Гольджи. Транспорт веществ в комплексе Гольджи. Белки проникают в стопку цистерн комплекса Гольджи из транспортных пузырьков с цис-поверхности, а выходят в вакуолях с транс-поверхности; каким образом осуществляется их перенос внутри комплекса, в ходе которого происходит их процессинг, остается неизвестным. Возможные пути этого транспорта описываются двумя моделями: 1) модель перемещения цистерн постулирует, что за счет слияния транспортных пузырьков на цис-поверхности непрерывно происходит новообразование цистерн (что легло в основу термина " формирующаяся поверхность" ), в дальнейшем смещающихся к транс-поверхности, по достижении которой они распадаются на ва- 19 куоли (" зрелая поверхность" ). Согласно этой модели, одни операции процессинга сменяются другими при перемещении самой цистерны по ходу изменений ее состава. Транспорт веществ из одной цистерны в другую, в соответствии с описанной моделью, отсутствует; 2) модель везикулярного транспорта предполагает, что цистерны не меняют своего расположения (остаются постоянно на своем месте), а продукты синтеза переносятся от цис- к транс-поверхности в пузырьках (везикулах), которые отпочковываются от предшествующей цистерны, сливаясь с последующей.

Функции комплекса Гольджи:

1. синтез полисахаридов и гликопротеинов (гликокаликса, слизи);

2. процессинг молекул: включение углеводных компонентов в гликопротеины, транспортируемые из грЭПС (терминальное гликозилирование), добавление фосфатных групп (фосфорилирование), жирных кислот (ацилирование), сульфатных остатков (сульфатирование), частичное расщепление белковых молекул (протеолитическая доработка). Каждый их указанных этапов процессинга веществ внутри комплекса Гольджи осуществляется в топографически определенном его компоненте (цис-, медиальных или транс-цистернах, а также сети транс-Гольджи);

3. конденсация секреторного продукта (в конденсирующих вакуолях) и образование секреторных гранул;

4. обеспечение новообразованных гранул мембраной (синтезированной в ЭПС) и упаковка в нее секреторных продуктов.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...