Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

73. Классификация лейкоцитов. Лейкоцитарная формула. Нейтрофильные лейкоциты (гранулоциты): разновидности, размеры, строение, функции.




73. Классификация лейкоцитов. Лейкоцитарная формула. Нейтрофильные лейкоциты (гранулоциты): разновидности, размеры, строение, функции.

Классификация лейкоцитов

I. Зернистые (гранулоциты)          II. Незернистые (агранулоциты)

1. Нейтрофилы                           1. Лимфоциты ( 20 - 35%)

- юные (0 – 0, 5%)                           - Т - лимфоциты

- палочкоядерные (3 – 5%)         - В - лимфоциты

- сегментоядерные (60 -65%)     2. Моноциты ( 6 – 8%)

2. Эозинофилы (1- 5%)

3. Базофилы ( 0, 5 – 1%)

Лейкограмма, или лейкоцитарная формула, — процентное соотношение различных видов лейкоцитов, определяемое при подсчёте их в окрашенном мазке крови под микроскопом.

Существует такое понятие, как сдвиг лейкограммы влево и вправо.

· Сдвиг лейкограммы влево — означает, что в крови появляются молодые, «незрелые» нейтрофилы, которые в норме присутствуют только в костном мозге, но не в крови.

* Сдвиг лейкограммы вправо — уменьшение нормального количества палочкоядерных нейтрофилов и увеличение числа сегментоядерных нейтрофилов с гиперсегментированными ядрами (мегалобластная анемия, болезни почек и печени, состояние после переливания крови).

Юные формы нейтрофилов имеют бобовидное ядро и в периферической крови содержится около 0-0, 5%. Ядра нейтрофилов содержат плотный хроматин, имеют сегментированное ядро, состоящие из 2-3 долек, соединенных тонкими перемычками.

У палочкоядерных нейтрофилов ядро тёмно – фиолетового цвета имеет вытянутую палочковидную форму, может иметь сужения. Нуклеолы отсутствуют. Цитоплазма розовая, содержит специфическую зернистость.

Функции нейтрофилов

ü Фагоцитоз бактерий и иммунных комплексов

ü Бактериостатическая и бактериолитическая

ü Выделение кейлонов и регуляция размножения лейкоцитов

74. Виды тканевых элементов, их определение. Определение понятия «клетка». Общий план субмикроскопического строения клетки.

Каждая ткань состоит из составных частей, или элементов, которые называются тканевыми элементами. По современным представлениям, существуют три основных вида тканевых элементов: клетки, межклеточное (промежуточное) вещество и симпласты.

 

Межклеточное вещество — это тканевой элемент, который синтезируется и секретируется особыми синтезирующими клетками и находится между клетками в составе ткани, составляя микросреду клеток. Межклеточное вещество состоит из основного (аморфного) вещества и волокон.

Основное вещество — это матрикс ткани, выполняющий метаболическую, гомеостатическую, трофическую, регуляторную роль. Состоит из воды, белков, углеводов, липидов, минеральных веществ. Может быть в состоянии золя (более жидкое) и геля (студнеобразное), а в костной ткани—в минерализованном, твердом состоянии. Волокна выполняют опорную, формообразующую функции, функцию эластичности, регулируют функции клеток. Они делятся на коллагеновые, эластические, ретикулярные. Межклеточное вещество является тканевым элементом соединительных тканей, и его строение более подробно будет изучено в соответствующем разделе.

Симпласт — это участок протоплазмы, ограниченный плазмолеммой и содержащий большое количество ядер. Симпласты образуются путем слияния клеток в отличие от многоядерных клеток, которые возникают в ходе многократных делений клеток без цитотомии. Например, миосимпласт (поперечнополосатос мышечное волокно) обрадуется в эмбриогенезе путем слияния клеток миобластов. Второй пример симпластов — симпластотрофобласт хориона. В зарубежной литературе термин " симпласт" практически не используется, вместо него применяются термины " многоялерная клетка" или " синцитий".

Синцитий. В отечественной гистологической литературе под синцитием понимают совокупность клеток отросчатой формы, соединенных друг с другом цитоплазматическими мостиками. Различают " ложные" и " истинные" синцитии. В " ложных" синцитиях между отростками контактирующих клеток имеются перерывы, представленные двумя клеточными цитолеммами и типичными контактами между ними. Примерами такого синцития являются ретикулярная ткань, эпителий тимуса и пульпы эмалевого органа развивающегося зуба. Единственным примером " истинного" синцития являются развивающиеся мужские половые клетки. Синцитий и симпласт иногда называют надклеточными структурами.

Клетка (cellula) — наименьшая структурная единица живого, способная к независимому существованию. Она является основой развития, строения и жизнедеятельности всех животных и растительных организмов.

Главные функции клетки: возбудимость, проводимость, сократимость, поглощение и ассимиляция, дыхание, секреция, экскреция, рост и репродукция.

Клетка состоит из трех основных частей: ядра, цитоплазмы и плазматической мембраны (цитолемма).

Ядро (nucleus) — система генетической детерминации и регуляции белкового синтеза в клетке

Тельце Бара — скопление гетерохроматина, соответствующее неактивной Х-хромосоме у особей женского пола.

Организация хромосом сложная. Они состоят из спиралей, которые сформированы из гистоновых нуклеосом, образующих сердечники, вокруг которых обернута двойная спираль ДНК.

Молекула ДНК построена из двух антипараллельных цепей с комплементарной последовательностью нуклеотидов. Участок молекулы ДНК, кодирующий последовательность аминокислотных остатков в полипептидной цепи, называется геномом.

Ядерная оболочка (nucleolemma) состоит из наружной и внутренней параллельных мембран, разделенных узким перинуклеарным пространством — цистерной, диаметром 10–30 нм. Мембраны продолжаются друг в друга вокруг ядерных пор.

К наружной ядерной мембране прикреплены рибосомы. Наружная мембрана переходит в гранулярную эндоплазматическую сеть (ГЭПС).

Внутренняя ядерная мембрана содержит сеть переплетающихся промежуточных (виментиновых) филаментов, связанных с ядерной пластинкой, к которой прикрепляются интерфазные хромосомы. Ядерная пластинка состоит из переплетенных промежуточных филаментов (ламинов) толщиной 80—100 нм, образующих кариоскелет.

Ядерные поры — это каналы связи диаметром 70—100 нм между ядром и цитоплазмой, их число и распределение изменчивы. Двусторонний транспорт через пору обеспечивается белками экспортинами (транспортируют РНК из ядра) и импортинами (переносят белковые субъединицы рибосом).

Ядерная пора изнутри выстлана специализированными структурами, образующими комплекс ядерной поры.

Комплекс ядерной поры (КЯП) состоит из немембранных структур: белка-рецептора на сигналы ядерного импорта, а также крупных белковых гранул, определяющих границы поры.

Пора ограничена восемью вертикальными белковыми комплексами, которые представляют собой крупные белковые молекулы или компоненты рибосом, находящиеся в процессе транспорта. По горизонтали пора ограничена тремя кольцевидными структурами, располагающимися одна над другой и соединенными вертикально 8 «спицами». Пора содержит также цитоплазменные волокна, транспортер и ядерную корзинку.

Первое кольцо со стороны цитоплазмы имеет волокнистую структуру — специализированный связывающий белок, который тянется в цитоплазму и обеспечивает импорт в ядро различных субстратов.

Среднее кольцо состоит из восьми трансмембранных белковых молекул, которые выбухают и в просвет поры, и в перинуклеарную цистерну. Эти молекулы прикрепляют гликопротеиновые компоненты КЯП к наружному ободку поры. Центр среднего кольца занят «транспортером», прикрепленным к периферическим белкам среднего кольца.

Третье кольцо со стороны нуклеоплазмы аналогично по строению первому. От него в сторону нуклеоплазмы отходит ядерная корзина, которая деформируется при транспорте веществ через пору.

Ядрышко (nucleolus) — хорошо определяемое только в интерфазе ядерное образование (одно или несколько), наблюдаемое в клетках, активно синтезирующих белок. Под электронным микроскопом в ядрышке выделяют три типичных компонента: фибрилшрный компонент, состоящий из тонких, диаметром 5–8 нм, нитей (совокупность первичных транскриптов — предшественников рРНК); гранулярный компонент — скопление плотных частиц диаметром 10–20 нм (поздние стадии образования предшественников рРНК); аморфный компонент, представляющий собой связанный с ядрышком хроматин, состоящий из ДНК в области ядрышкового организатора хромосомы.

Фибриллярный и гранулярный компоненты ядрышка образуют ядрышковую нить (нуклеолонема) толщиной 60–80 нм, формирующую в пределах ядрышка широкопетлистую сеть.

Ядрышко участвует в синтезе рРНК и формировании предшественников рибосомальных субъединиц. Размеры и число ядрышек увеличиваются при повышении функциональной активности клетки.

Плазматическая мембрана (плазмолемма, клеточная мембрана) окружает клетку и ограничивает ее от внешней среды; обеспечивает распознавание клеткой других клеток, а также взаимодействие с межклеточным веществом (прикрепление к его элементам, взаимодействие с сигнальными молекулами: гормонами, медиаторами, цитокинами и др. ); регулирует движение ионов и макромолекул из клетки и в клетку (селективная проницаемость), осуществляет активный и пассивный транспорт веществ (эндоцитоз — фагоцитоз и пиноцитоз, экзоцитоз); обеспечивает механическое и химическое взаимодействие между клетками, а также движение клетки (образование псевдо-, фило — и ламеллоподий).

Молекулярное строение плазматической мембраны описывается жидкостно-мозаичной моделью, согласно которой она состоит из двойного фосфолипидного слоя, внутри которого распределены интегральные и периферические белки; гидрофильные концы фосфолипидов обращены наружу, гидрофобные цепи — внутрь; между хвостами противолежащих молекул фосфолипидов имеются слабые гидрофобные связи.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...