Законы Кирхгофа в комплексной форме и для мгновенных значений.
Первый закон Кирхгофа гласит, что алгебраическая сумма мгновенных значений токов в любом узле цепи равна нулю: Σ i = 0. Выразив мгновенные значения токов через их комплексные выражения, получим первый закон Кирхгофа в комплексной форме: Σ I = 0. Сумма комплексных значений токов в любом узле цепи равна нулю. Для любого замкнутого контура цепи переменного тока может быть составлено уравнение мгновенных значений ЭДС, токов и напряжений по второму закону Кирхгофа: Σ е = Σ ir + Σ u. Выразив ЭДС, токи и напряжения в комплексной форме, получим второй закон Кирхгофа в комплексной форме: Σ E = Σ IZ + Σ U. Сумма комплексных значений ЭДС при обходе замкнутого контура равна сумме произведений комплексных значений токов на соответствующие комплексные значения полных сопротивлений и сумме комплексных значений напряжений. Комплексные E, U и I имеют знак плюс, если принятые направления этих величин совпадают с произвольно выбранным направлением обхода контура, и знак минус, когда направления противоположны.
6. Конденсатор в цепи переменного тока. Векторная диаграмма. Комплексное сопротивление емкостного элемента. Конденсатор – это пассивный элемент, характеризующийся емкостью. Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью. Если к нему приложить синусоидальное напряжение (см. рис. 4), то ток i через него будет равен
Полученный результат показывает, что напряжение на конденсаторе отстает по фазе от тока на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i, то на его экране будет иметь место картинка, соответствующая рис. 5.
Из (3) вытекает: ;
.
Введенный параметр называют реактивным емкостным сопротивлением конденсатора. Как и резистивное сопротивление,ХС имеет размерность Ом. Однако в отличие от R данный параметр является функцией частоты, что иллюстрирует рис. 6. Из рис. 6 вытекает, что при f=0 конденсатор представляет разрыв для тока, а при f→ ∞ ХС=0 Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:
- разделим первый из них на второй:
В последнем соотношении - комплексное сопротивление конденсатора. Умножение на соответствует повороту вектора на угол по часовой стрелке. Следовательно, уравнению (4) соответствует векторная диаграмма, представленная на рис. 7.
7. Плоскостной полупроводниковый диод. Принцип действия полупроводникового диода. Вольт-амперная характеристика полупроводникового диода. Диод – это электропреобразовательный полупроводниковый прибор (ПП) с одним электрическим переходом и двумя выводами База Б и эмиттер Э с помощью базового БЭ и эмиттерного ЭЭ электродов, обеспечивающих омические контакты с n- и p-областями, соединяются с металлическими выводами В, посредством которых диод включается во внешнюю цепь. Принцип работы большинства диодов основан на использовании физических явлений в электрическом переходе, таких, как асимметрия вольт-амперной характеристики, пробой электронно-дырочного перехода, зависимость барьерной емкости от напряжения и т.д. Плоскостным называют р-n-переход, линейные размеры которого, определяющие его площадь, значительно больше толщины. Плоскостные диоды малой и средней мощности выполняются обычно со сплавным p-n-переходом. Сплавной р-n-переход в германиевых диодах (рис. 3.2) получается путем вплавления таблетки примесного акцепторного элемента (индия) в кристалл германия n-типа. При этом расплавленный индий частично диффундирует в германий, придавая близлежащей области кристалла германия дырочную проводимость. Область с дырочной проводимостью (р-типа) имеет очень низкое удельное сопротивление и является эмиттером по отношению к более высокоомному кристаллу полупроводника n-типа – базе диода. Устройство германиевого плоскостного диода показано на рис. 3.2. Кремниевые плоскостные диоды получаются путем вплавления алюминия в кристалл кремния. Кремниевые и германиевые диоды оформляются в металлическом сварном корпусе со стеклянными изоляторами и гибкими выводами.
В мощных плоскостных диодах p-n-переход чаще выполняется путем диффузии из газовой фазы атомов примеси в кристалл полупроводника. При диффузионном методе обеспечивается лучшая воспроизводимость параметров диодов. Мощные диоды часто выполняются с охлаждающими радиаторами. Рис. 3.2. Устройство диода: а – плоскостного; б - точечного Теоретические вольт-амперные характеристики n-p-перехода и полупроводникового диода (рис.3.3) несколько отличаются. В области прямых токов это объясняется тем, что часть внешнего напряжения, приложенного к выводам диода, падает на объемном омическом сопротивлении базы (rб), которое определяется ее геометрическими размерами и удельным сопротивлением исходного материала. Его величина может лежать в пределах от единиц до нескольких десятков ом. Падение напряжения на сопротивлении rб становится существенным при токах, превышающих единицы миллиампер. Кроме того, часть напряжения падает на сопротивлении выводов. В результате, напряжение непосредственно на n-р-переходе будет меньше напряжения, приложенного к внешним выводам диода. Реальная характеристика идет ниже теоретической и становится почти линейной. Реальная ВАХ в области прямых напряжений описывается выражением: Отсюда напряжение, приложенное к диоду, равно: Uэб = I rб + Upn. Необходимо заметить, что сопротивление базы (rб) зависит от величины прямого тока диода, поэтому вольт-амперная характеристика и в области больших токов является нелинейной функцией.
При увеличении обратного напряжения ток диода не остается постоянным и равным току I0. Одной из причин увеличения тока является термическая генерация носителей заряда в переходе, не учтенная при выводе выражения для теоретической ВАХ. Составляющая обратного тока через переход, зависящая от количества генерируемых в переходе носителей, называется током термогенерации (Iтг). С ростом обратного напряжения переход расширяется, количество генерируемых в нем носителей растет и ток Iтг также увеличивается. Другой причиной увеличения обратного тока является конечная величина проводимости поверхности кристалла, из которого изготовлен диод. Этот ток называется током утечки (Iу). В современных диодах он всегда меньше термотока. Таким образом, обратный ток в диоде, обозначаемый Iобр, определяется как сумма токов: Iобр = I0 + Iтг + Iу. Каждый тип диодов характеризуется параметрами – величинами, определяющими основные свойства приборов, а также имеет отличные от других вольт-амперные характеристики. Различают параметры, которыми характеризуется любой полупроводниковый диод, и специальные, присущие только отдельным диодам. Полупроводниковые диоды имеют следующие основные параметры:
Предельный режим работы диодов характеризуют максимально допустимые параметры – параметры, которые обеспечивают заданную надежность и значения которых не должны превышаться при любых условиях эксплуатации:
Допустимая рассеиваемая мощность (Рmах) определяется тепловым сопротивлением диода (Rт), допустимой температурой перехода (Тп mах) и температурой окружающей среды (То) в соответствии с соотношением: Максимально допустимый прямой ток можно определить по заданной, максимально допустимой мощности: Обратное максимально допустимое напряжение (Uобр. mах) для различных типов диодов может принимать значения от нескольких единиц до десятков тысяч вольт. Оно ограничивается пробивным напряжением: Uобр max? 0,8 Uпроб. Дифференциальное сопротивление (rдиф) равно отношению приращения напряжения на диоде к вызвавшему его малому приращению тока через диод: Сопротивление rдиф зависит от режима работы диода.
Читайте также: I. Учебно-методическое пособие для специалистов системы дошкольного образования по организации комплексной экспертизы образовательных ресурсов для дошкольников. Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|