Расчет линейных цепей постоянного тока методом преобразований (последовательное, параллельное, смешанное соединение).
Написать от руки.
18. Туннельный диод, варикап, светодиод, фотодиод: назначение, устройство и принцип действия Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области.[1] При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона[2], вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.
Варикап (от англ. vari(able) — «переменный», и cap(acity) — «ёмкость») — полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n перехода от обратного напряжения. Варикапы применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь n-области, в результате чего происходит расширение обеднённой области p-n-перехода, которую можно представить как простейший плоский конденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может. По достижении этого минимума с ростом обратного напряжения ёмкость не изменяется.
Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Светодио́д или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) — полупроводниковый прибор с электронно-дырочным переходом или контактом металл-полупроводник, создающий оптическое излучение при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его спектральные характеристики зависят в том числе от химического состава использованных в нём полупроводников. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).
Фотодиод- Полупроводниковый диод, обладающий свойством односторонней фотопроводимости (См. Фотопроводимость) при воздействии на него оптического излучения. Ф. представляет собой полупроводниковый кристалл обычно с электронно-дырочным переходом (См. Электронно-дырочный переход) (р – n -переходом), снабженный 2 металлическими выводами (один от р-, другой от n- области) и вмонтированный в металлический или пластмассовый защитный корпус. Материалами, из которых выполняют Ф., служат Ge, Si, GaAs, HgCdTe и др. Различают 2 режима работы Ф.: фотодиодный, когда во внешней цепи Ф. содержится источник постоянного тока, создающий на р–n -переходе обратное смещение, и вентильный, когда такой источник отсутствует. В фотодиодном режиме Ф., как и Фоторезистор, используют для управления электрическим током в цепи Ф. в соответствии с изменением интенсивности падающего излучения. Возникающие под действием излучения неосновные носители диффундируют через р–n -переход и ослабляют электрическое поле последнего. Фототок в Ф. в широких пределах линейно зависит от интенсивности падающего излучения и практически не зависит от напряжения смещения. В вентильном режиме Ф., как и полупроводниковый Фотоэлемент, используют в качестве генератора Фотоэдс.
Читайте также: A) постоянного проживания в РК Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|