Главная | Обратная связь
МегаЛекции

Устройство масляных выключателей





 

 

Типы выключателей. Оперативное, включение и отключение под нагрузкой электрооборудования или отдельных аппаратов распределительных устройств, подстанций или электрических сетей, а также их автоматическое отключение при нарушении установленного режима работы (короткие замыкания, перегрузки) осуществляются выключателями. На напряжение 6 и 10 кВ применяют масляные, электромагнитные, автогазовые и воздушные выключатели, а в последние годы — вакуумные и элегазовые. Однако пока наиболее распространены в закрытых распределительных устройствах масляные выключатели, в которых средством гашения дуги является минеральное масло. Различают два вида масляных выключателей (по количеству масла для их заполнения): баковые (многообъемные) и горшковые (малообъемные). Баковый масляный выключатель имеет один общий для всех трех фаз бак, заполненный маслом, которое занимает 70—80 % его объема. Масло служит не только для гашения электрической дуги, возникающей между контактами при отключении, но и изоляцией токоведущих частей друг от друга и от заземленного бака. Баковые выключатели, действующие на принципе простого разрыва дуги в масле, ранее широко применявшиеся, в настоящее время не используются, поэтому здесь не рассматриваются. Они обладают малой отключающей способностью, взрыво- и пожароопасны. На промышленных предприятиях в распределительных устройствах напряжением 6—10 кВ применяют исключительно горшковые выключатели. Масло в них используют только для гашения дуги, поэтому его значительно меньше— 3—4 % объема горшка (полюса). Принцип действия выключателя основан на гашении электрической дуги, возникающей при размыкании контактов, потоком газомасляной смеси, которая образуется в результате интенсивного разложения трансформаторного масла (им заполнен выключатель) под действием высокой температуры дуги. Этот поток получает определенное направление в дугогасительном устройстве, размещенном в зоне горения дуги. Гашение электрической дуги при переменном токе облегчается тем, что ток в течение одного периода дважды проходит через нуль. Выключатель имеет следующие особенности: его контакты облицованы дугостойкой металлокерамикой, что значительно увеличивает срок их службы; дугогасительные устройства доступны для осмотра и ревизии; после осмотра не требуется повторной регулировки; выводы допускают непосредственное присоединение алюминиевых шин. Каждый полюс выключателя размещен в отдельном цилиндре (горшке), и после присоединения токопроводящих шин к крышкам цилиндров последние оказываются под напряжением. Поэтому на поверхности цилиндров наносят предостерегающие знаки в виде стрелы и все три полюса закрепляют на изоляторах на общей раме. Масляные выключатели характеризуются: номинальным напряжением (в киловольтах), номинальным током (в амперах), отключающей способностью — мощностью отключения (в мегавольт-амперах), номинальным током отключения (в килоамперах) и другими параметрами. Отключающая способность масляного выключателя определяется той предельной мощностью короткого замыкания, которую он под действием защиты способен отключить без каких-либо разрушений выключателя. Выключатели не должны подвергаться действию тока, превышающего предельный сквозной ток короткого замыкания. Выключатели различают по климатическому исполнению (например, У — умеренный климат, Т — тропический) и по категории размещения. Климатические исполнения У и Т отличаются друг от друга изоляцией и характером покрытий. Кроме того, выключатели различают также по характеру применяемых для управления ими приводов. На промышленных предприятиях в закрытых распределительных устройствах используют малообъемные масляные выключатели серий ВМП-10, ВМПП-10, ВМПЭ-10 и др. Для комплектования КРУ все больше выпускается выключателей со встроенными приводами, которые не подлежат наладке и регулировке, поскольку они полностью собраны и отрегулированы на заводе-изготовителе. Все выключатели серии ВМП максимально унифицированы и в качестве базовой модели служит ВМП-10. За последние годы стали использовать чаще выключатели с электромагнитным гашением дуги. Перспективны новые вакуумные выключатели, особенно для применения в установках, где требуется большое число циклов отключения, а также элегазовые. Выключатели ВМП-10 (масляные подвесные) предназначены для работы в закрытых установках переменного тока высокого напряжения (10 кВ) частотой 50 Гц и изготовляются двух видов: обычные — для работы в нормальных климатических условиях и тропические (Т). Кроме того, их выполняют с усиленной механической стойкостью (У). В зависимости от типа распределительных устройств выключатели выпускаются по габаритам двух исполнений: для комплектных стационарных распредустройств КСО (ВМП-10, ВМП-10У, ВМП-10Т) и для малогабаритных комплектных распредустройств КРУ с выкатными ячейками (ВМП-10К, ВМП-10КУ, ВМП-10КТ).



Рисунок 18.20 -Выключатель ВМП-10: 1 — полюс, 2— изолятор, 3— рама, 4 — изоляционная тяга, 5 — приводной вал, 6 — масляный буфер, 7 — болт заземления  

Выключатель ВМП-10 (рис. 18.20) изготовляют трехполюсным, рассчитанным на номинальное напряжение 10 кВ и токи 600, 1000 и 1500 А. Он смонтирован на общей сварной раме 3, на которой укреплены полюсы 1 на шести изоляторах 2 (по два на полюс) с эластичным креплением арматуры для повышения механической прочности выключателя. Внутри рамы расположен приводной механизм, который через изоляционную тягу 4 передает движение от привода подвижным контактам выключателя и состоит из приводного вала 5 с рычагами, отключающих пружин и масляного буфера 6. Каждый полюс представляет собой прочный влагостойкий изоляционный распорный цилиндр, на концах которого армированы металлические фланцы. На верхнем и нижнем фланцах имеются контактные поверхности для присоединения к выключателю ответвительных шин. На верхнем фланце укреплен корпус из алюминиевого сплава, внутри которого расположены рычажный механизм, подвижный контактный стержень, роликовое токосъемное устройство и маслоотделитель. Корпус закрывается крышкой, имеющей отверстия для выхода газов и маслоналивное с пробкой. Нижний фланец закрывается съемной крышкой, внутри которой расположен неподвижный розеточный контакт, а снаружи — пробка отверстия для спуска масла. Для наблюдения за уровнем масла на выключателе установлен маслоуказатель. Внутри цилиндра над розеточным контактом имеется гасительная камера, работающая на принципе масляного дутья.

Выключатель включается за счет энергии привода, а отключается пружинами. Для смягчения удара при включении служит пружинный буфер, увеличивающий усилия отключения и ускоряющий размыкание контактов, а при отключении — масляный буфер. Для повышения стойкости контактов против действия электрической дуги и увеличения срока их службы съемный наконечник подвижного контакта и верхние торцы ламелей розеточного контакта облицованы дугостойкой металлокерамикой.

Рисунок 18.21 - Полюс выключателя ВМП-10: 1 и 10 — верхняя и нижняя (ввод) крышки, 2,9 — пробки, 3 - маслоотделитель, 4,6 — направляющие колодка и стержни, 5—механизм, 7, 11 — подвижный и неподвижный контакты, 8 - маслоуказатель, 12, 15 — нижний и верхний фланцы, 13 - дугогасительная камера, 14 - цилиндр, 16 - контактный вывод, 17 — роликовый токосъем, 18 — корпус  

Детали устройства полюса выключателя ВМП-10 показаны на рис. 2. Корпус 18 полюса выключателя закрыт крышкой 1, снабженной отверстием для выхода газов и пробкой 2. Между крышкой и корпусом установлен маслоотделитель 3 для разобщения газов и масла при выхлопе в процессе гашения дуги. Электрическая цепь подводится к подвижному контакту 7 от верхнего вывода 16 через направляющие стержни 6 и роликовый токосъем 17. Центрирование хода подвижного контакта по конструктивной оси полюса осуществляется капроновой колодкой 4 и роликами токосъема. С выводом 16 жестко соединены стеклоэпоксидный цилиндр 14, армированный фланцами 12 и 15, и корпус 18 с механизмом подвижного контакта. В нижней части цилиндра 14 расположена дугогасительная камера 13, собранная из пластин фибры, гетинакса и электрокартона на стяжных шпильках. Пластины имеют фигурные вырезы. После сборки камеры вырезы в пластинах образуют две-три радиальные щели поперечного дутья с раздельными вертикальными выходами вверх. Над щелями располагается несколько масляных карманов. Камера опирается на изоляционный цилиндр, установленный на нижнем вводе 10. Здесь же смонтирован розеточный контакт 11 и предусмотрена пробка 9 масловыпускного отверстия. Нижний фланец 12 имеет карман для воздушного буфера и маслоуказатель 8, снабженный обратным клапаном, который размещен в основании маслоуказателя. Обратный клапан предотвращает прорыв дугогасительной среды через маслоуказатель при возрастании давления внутри полюса. Воздух, всегда имеющийся в кармане, при гашении дуги сжимается, аккумулируя энергию в момент пика давления. Впоследствии эта энергия освобождается, обеспечивая в зоне дуги давление, необходимое для ее гашения. Для смягчения ударов подвижной части на границах ее хода установлены масляный и пружинный буфера. Для отключения выключателей служат специальные пружины. Буфера и пружины расположены на раме. Выключатель ВМПП-10 (маломасляный подвесной с пружинным приводом) имеет такие же принцип действия и назначение, что и выключатель ВМП-10. Он состоит из рамы 1 (рис. 18.22) с тремя подвешенными на опорных изоляторах 3 полюсами 2, встроенного пружинного привода и блока релейной защиты.

Рисунок 18.22 - Выключатель ВМПП-10 (ВМПП-10Т): 1 — рама со встроенным пружинным приводом и блоком релейной защиты, 2 — полюс, 3 — опорный изолятор, 4 — изоляционная тяга, 5 — междуполюсная перегородка, 6 — болт заземления, 7 — крышка

 

Встроенный привод состоит из рамы, валов привода и выключателя, заводного устройства рабочих пружин, двух запорных устройств, блоков контактов положения привода, аварийной сигнализации и положения выключателя, электромагнитов дистанционного отключения и включения, релейного вала и пульта ручного управления выключателем. Привод снабжен электрической и механической блокировкой. Оперативное включение или отключение, а также автоматическое отключение выключателя при токах короткого замыкания или перегрузках осуществляется рабочими пружинами, которые срабатывают при воздействии электромагнитов или защитных реле. Рама 1 является основанием выключателя; в ней имеется четыре отверстия для крепления выключателя к выдвижному элементу камеры КРУ. На металлической крышке 7, закрывающей раму выключателя, размещены окна для его обслуживания и наблюдения за показателями. Дугогасительная камера полюсов выключателя может быть двух исполнений: поперечного масляного дутья (для выключателей с номинальным током отключением 20 к А) и встречно-поперечного масляного дутья (для выключателей с током отключения 31,5 кА). В каждом полюсе на нижнем фланце цилиндра имеется маслоуказатель (стеклянная трубка с двумя предельными дисками). Выключатель ВМПЭ-10 (трехполюсный маломасляный с встроенным электромагнитным приводом) выпускается на номинальные токи 630, 1000 и 1600 А двух исполнений: для работы в нормальных климатических условиях и в условиях тропического климата (индексы У и Т). Принципы действия и гашения дуги выключателя ВМПЭ-10 такие же, как и в выключатеде ВМП-10, а конструкция и размеры полюсов аналогичны конструкции и размерам полюсов выключателя ВМПП-10.

Выключатель нагрузки

Выключатель нагрузки – коммутационный аппарат, выключатель, который служит для отключения-включения под нагрузкой подключенного через него участка электрической сети, и, как правило, представляет собой автогазовый выключатель. В отличие от силовых выключателей, выключатели нагрузки не предназначены для коммутаций токов короткого замыкания (для защиты присоединения от которых устанавливаются предохранители), но при этом имеют меньшую стоимость. Выключатель нагрузки весьма распространенный коммутационный аппарат в распределительных сетях 6, 10 кВ.

 

Рисунок 18.23 - Выключатель нагрузки ВНП-17 на 6 и 10 кB:1 - опорный изолятор; 2 - нож; 3 - дугогасительное устройство; 4 - фарфоровая тяга; 5 - патрон предохранителя; 6 - отключающая пружина; 7 - рычаг для присоединения к приводу; 8 - опорная рама выключателя нагрузки; 9 - устройство, отключающее выключатель при перегорании предохранителя на любом из трех полюсов; 10 - отключающий электромагнит

Короткозамыкатель

Короткозамыкатель – электрический аппарат, предназначенный создания искусственного короткого замыкания, в случае внутреннего повреждения силового трансформатора в цепи которого по стороне высшего напряжения от установлен в паре с отделителем. При таком КЗ, действием линейных защит на питающих подстанциях ВЛ обесточивается, поврежденный трансформатор отсоединяется от сети отключением отделителя, а линия включается в работу действием АПВ.

Рисунок 18.24 - Короткозамыкатель

В сетях 110-220 кВ короткозамыкатели имеют один полюс, в сетях 35 кВ - два. Подвижный нож включается действием взведенных включающих пружин короткозамыкателя.

Короткозамыкатели представляют собой аппараты вертикально-рубящего типа, состоящие из основания, изоляционной колонки, неподвижного контакта с выводом для присоединения к линии электропередачи и заземляющего ножа, на конце которого укреплена съемная контактная пластинка. В основании короткозамыкатели размещен вал, установленный в подшипниках, две включающие пружины с регулировкой натяжения, соединенные с основанием и рычагами вала короткозамыкатели, а также гидравлический буфер. Нормальное положение короткозамыкателя отключенное. При этом нож отведен от неподвижного контакта на разрядное расстояние, а его включающие пружины растянуты. Это положение ножа фиксируется приводом. При подаче сигнала на привод короткозамыкателя привод освобождает нож короткозамыкателя, который под действием пружины входит в неподвижный контакт, создавая короткое замыкание на землю.

 


Вентильные разрядники

 

 

Вентильные разрядники служат средством ограничения перенапряжений оборудования электроустановок, возникающих при коммутациях электрических цепей, разрядах молнии и т. п.

Защитное действие разрядника обуславливается тем, что при появлении опасного изоляции перенапряжения происходит пробой искрового промежутка разрядника, а протекающий через разрядник импульсный ток вследствие нелинейности рабочего сопротивления не создает опасного для изоляции повышения напряжения. Находят применение вентильные разрядники различной конструкции. Приняты следующие буквенные обозначения типов разрядников: Р - разрядник; В - вентильный; О - облегченный; С - станционный; М - магнитный или модернизированный; Т - с токоограничивающими искровыми промежутками или тропического исполнения (если Т стоит после цифры); П - повышенное напряжение гашения; Г - грозовой; РД - с растягивающейся дугой; У - для работы в районах с умеренным климатом; число после дефиса номинальное напряжение, кВ; цифра 1 - для работы на открытом воздухе.

Рисунок 18.25-Вентильный разрядник (а) и его искровые промежутки в увеличенном масштабе (б) Рисунок 18.26-Вольт-амперная характеристика вилитового резистора
     

Например, РВМГ-110МТ1 разрядник вентильный, с магнитным гашением, грозовой, на напряжение 110 кВ, модернизированный, с токоограничивающими искровыми промежутками, для работы на открытом воздухе.

По назначению вентильные разрядники делятся: для защиты электрооборудования от атмосферных перенапряжений (РВО, РВС, РВМГ, РВМА, РВП); для защиты машин и оборудования от атмосферных и кратковременных внутренних перенапряжений (РВРД, РВМА, РВВМ, РВМ); для защиты тягового электрооборудования от перенапряжений (РМВУ).

Для защиты электрооборудования высокого напряжения (60 кВ и выше) от грозовых перенапряжений разрядники комплектуются из типовых элементов (разрядники типа РВС - из элементов напряжением 15, 20, 30, 33 или 35 кВ; разрядники типа РВМГ - из унифицированных рабочих элементов РВМГ-30) РВП - разрядник вентильный подстанционный, облегченной конструкции и не имеющий шунтирующих сопротивлений.

Разрядник типа РВС-10 (разрядник вилитовый станционный на 10 кВ) показан на рис. 18.25, а. Основными элементами являются вилитовые кольца 1, искровые промежутки 2 и рабочие резисторы 3. Эти элементы расположены внутри фарфорового кожуха 4, который с торцов имеет специальные фланцы 5 для крепления и присоединения разрядника. Рабочие резисторы 3 изменяют свои характеристики при наличии влаги. Кроме того, влага, оседая на стенках и деталях внутри разрядника, ухудшает его изоляцию и создает возможность перекрытия. Для исключения проникновения влаги кожух разрядника герметизируется по торцам с помощью пластин 6 и уплотнительных резиновых прокладок 7. Работа разрядника происходит в следующем порядке. При появлении перенапряжения пробиваются три последовательно включенных блока искровых промежутков 2 (рис. 18.25,б). Импульс тока при этом через рабочие резисторы замыкается на землю.

Возникший сопровождающий ток ограничивается рабочими резисторами, которые создают условия для гашения дуги сопровождающего тока. После пробоя искровых промежутков напряжение на разряднике Uр=IRр. Если сопротивление разрядника Rp, определяемое рабочими резисторами, линейное, то напряжение на разряднике растет пропорционально току и может стать выше допустимого для защищаемого оборудования. Для ограничения напряжения Up сопротивление Rp выполняется нелинейным и с ростом тока уменьшается.

Описанные разрядники получили название вентильных, потому что при импульсных токах их сопротивление резко падает, что дает возможность пропустить большой ток при относительно небольшом падении напряжения. В качестве материала нелинейных резисторов широко применяется вилит. Типичная вольт-амперная характеристика вилитового резистора приведена на рис. 18.26, а. При небольших токах сопротивление Rp велико и напряжение линейно растет с ростом тока (область А). При больших токах сопротивление резко уменьшается и напряжение почти не растет (область В). Основу вилита составляют зерна карборунда SiC с удельным сопротивлением около 10-2 Ом-м. На поверхности карборундовых зерен создается пленка оксида кремния SiО2 толщиной 10-7 м, сопротивление которой зависит от приложенного к ней напряжения. При небольших напряжениях удельное сопротивление пленки составляет 104—106 Ом-м. При увеличении приложенного напряжения сопротивление пленки резко уменьшается, сопротивление определяется в основном зернами карборунда и падение напряжения ограничивается. Рабочие резисторы изготавливаются в виде дисков диаметром 0,1—0,15 м и высотой (20-60) - 10-3 м. С помощью жидкого стекла зерна карборунда прочно связываются между собой. Вилит очень гигроскопичен. Для защиты от влаги цилиндрическая поверхность дисков покрывается изолирующей обмазкой. Торцевые поверхности являются контактными и металлизируются. Обычно несколько рабочих резисторов в виде дисков соединяются последовательно (на рис. 18.25, а изображено 10 дисков).

Для уменьшения остающегося напряжения число дисков n должно быть возможно меньше. При прохождении тока температура дисков повышается. При протекании импульса тока большой амплитуды, но малой длительности (десятки микросекунд) резисторы не успевают нагреваться до высокой температуры. При длительном протекании даже небольших токов промышленной частоты (один полупериод равен 10 мс) температура гложет превысить допустимое значение, диски теряют свои вентильные свойства, и разрядник выходит из строя. Предельно допустимая амплитуда импульса тока для диска диаметром 100 мм равна 10 кА при длительности импульса 40 мкс. Допустимая амплитуда прямоугольного импульса с длительностью 2000 мкс не превышает 150 А. Такие токи диск без повреждения пропускает 20-30 раз. После прохождения импульсного тока через разрядник начинает протекать сопровождающий ток, представляющий собой ток промышленной частоты. По мере приближения тока к нулевому значению сопротивление вилита резко увеличивается, что ведет к искажению синусоидальной формы тока. Увеличение сопротивления цепи ведет к уменьшению тока и угла сдвига фаз ф между током и напряжением. На рис. 18.26, б показаны кривые токов в рабочем резисторе. Здесь 1 — напряжение источника 50 Гц; 2 — кривая тока цепи, определяемого индуктивным сопротивлением X; 3 — кривая тока, определяемого рабочим резистором. Из-за нелинейности резистора Rp уменьшается возвращающееся напряжение (напряжение промышленной частоты). Уменьшение скорости подхода тока к нулю уменьшает мощность дуги в области нулевого значения тока. Все это облегчает процесс гашения дуги, горящей между электродами разрядного промежутка. Благодаря применению латунных электродов в искровых промежутках после прохода тока через нуль около каждого катода образуется промежуток, электрическая прочность которого 1,5 кВ. Это обеспечивает гашение сопровождающего тока при первом прохождении тока через нуль и позволяет погасить дугу в искровых промежутках без применения специальных дугогасительных устройств. Устройство искрового промежутка вентильного разрядника ясно из рис. 18.25, б. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристику. Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка. Так как диэлектрическая проницаемость воздуха значительно меньше, чем у входящей в состав миканита слюды, то в приэлектродном объеме воздуха возникают высокие градиенты электрического поля, вызывающие его начальную ионизацию. Образующиеся электроны приводят к быстрому формированию разряда в центре искрового промежутка. Искровые промежутки последовательно соединяются, образуя блок (см. рис. 18.25,б). Обычно разрядник имеет несколько таких блоков. Результирующая вольт-секундная характеристика последовательно соединенных промежутков достаточно пологая. Экспериментально установлено, что одиночный искровой промежуток способен отключить сопровождающий ток с амплитудой 80—100 А при действующем значении напряжения 1—1,5 кВ. Число единичных промежутков выбирается исходя из этого напряжения.

Рисунок 18.27 -Комбинированный разрядник с тервитовыми резисторами

Количество дисков рабочего резистора должно быть таким, чтобы максимальное значение тока не превысило 80—100 А. При этом гашение дуги обеспечивается за один полупериод. Для обеспечения равномерной нагрузки при промышленной частоте промежутки шунтируются нелинейными резисторами 1 (рис. 18.27). Термическая стойкость дисков рассчитана на пропускание сопровождающего тока в течение одного-двух полупериодов. Внутренние перенапряжения имеют низкочастотный характер и могут длиться до 1 с. Вследствие малой термической стойкости вилита может быть использован для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений используется аналогичный вилиту материал тервит, обладающий большой термической стойкостью и повышенным показателем нелинейности. Тервитовые диски используются в комбинированных разрядниках (рис. 18.27, а), предназначенных для защиты как от внутренних (коммутационных), так и от внешних (атмосферных) перенапряжений. При внутренних перенапряжениях работают оба нелинейных резистора НР1 и НР2 (кривая 1 на рис. 18.27,б). При атмосферных перенапряжениях из-за большого тока напряжение на НР2 пробивает промежуток ИП2 и напряжение на защищаемой линии снижается (кривая 2). Вентильные разрядники работают бесшумно. Число срабатываний фиксируется специальным регистратором, который включается между нижним выводом разрядника и заземлением. Наиболее надежны электромагнитные регистраторы, якорь которых при прохождении импульсного тока воздействует на храповой механизм счетного устройства. С помощью искровых промежутков, показанных на рис. 18.25,б, невозможно отключение токов 200—250 А. В этом случае для гашения дуги применяются камеры магнитного дутья с постоянным магнитом. Дуга, возникающая в искровом промежутке, под воздействием магнитного поля загоняется в узкую щель с керамическими станками. На этом принципе созданы разрядники на напряжение до 500 кВ. Увеличение диаметра дисков до 150 мм позволяет поднять их термическую стойкость. В результате комбинированные магнитно-вентильные разрядники позволяют ограничивать как внутренние, так и атмосферные перенапряжения. Основные характеристики вентильного разрядника: Напряжение гашения Uгаш — наибольшее приложенное к разряднику напряжение промышленной частоты, при котором надежно обрывается сопровождающий ток. Это напряжение определяется свойствами разрядника. Напряжение промышленной частоты, прикладываемое к разряднику, зависит от параметров схемы


Вопросы для самоконтроля

1. Опишите устройство масляного трансформатора.

2. Опишите устройство масляного выключателя.

3. Опишите устройство выключателя нагрузки.

4. Опишите устройство разрядника.

Литература: [12, 18].

 

 


СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

 

 

1. Авдеев В. А. Основы проектирования металлургических заводов : справ. изд. / В. А. Авдеев, В. М. Друян, Б. И. Кудрин. – М. : Интермет Инжиниринг, 2002. – 464 с.

2. Андреев В. А. Релейная защита и автоматика систем электроснабжения : учеб. пособие для студ. спец. «Электроснабжение» / В. А. Андреев. – Ульяновск : УГТУ, 2000. – 282 с.

3. Бохмат И. С. Тарифные проблемы энергоемкой промышленности / И. С. Бохмат. – М. : 2003. – 144 с.

4. Вагин Г. Я. Режимы электросварочных машин / Г. Я. Вагин. – М. : Энергоатомиздат, 1985. – 193 с.

5. Варнавский Б. П. Энергоаудит промышленных и коммунальных предприятий / Б. П. Варнавский, А. И. Колесников, М. Н. Федоров. – М. : АСЭМ, 1999. – 214 с.

6. Жежеленко И. В. Высшие гармоники в системах электроснабжения промпредприятий / И. В. Жежеленко. – М. : Энергоатомиздат, 2000. – 331 с.

7. Железко Ю. С. Расчет, анализ и нормирование потерь электроэнергии в электрических сетях / Ю. С. Железко, А. В. Артемьев, О. Д. Савченко. – М. : Изд-во НЦ ЭНАС, 2003. – 278 с.

8. Иванов В. С. Режимы потребления и качество электроэнергии систем электроснабжения промышленных предприятий / В. С. Иванов, В. И. Соколов. – М. : Энергоатомиздат, 1987. – 336 с.

9. Кудрин Б. И. Техногенная самоорганизация. Для технариев электрики и философов / Б. И. Кудрин. Вып. 25: Ценологические исследования. – М.: Центр системных исследований, 2004. – 248 с.

10. Кудрин Б. И. Статистические таблицы временных рядов Н-распределений электрооборудования и электропотребления : учеб. пособие по курсу «Электроснабжение промышленных предприятий» / Б. И. Кудрин, В. В. Фуфаев. – Вып. 13: Ценологические исследования. – М. : Центр системных исследований, 1999. – 352 с.

11. Кудрин Б. И. Электроснабжение промышленных предприятий : учебник для вузов / Б. И. Кудрин. – М. : Энергоатомиздат, 1995. – 416 с.

12. Никифоров Г. В. Энергосбережение и управление энергопотреблением в металлургическом производстве / Г. В. Никифоров, В. К. Олейников, Б. И. Заславец. – М. : Энергоатомиздат, 2003. – 479 с.

13. Правила технической эксплуатации электроустановок потребителей. – М. : Изд-во НЦ ЭНАС, 2003. – 304 с.

14. Правила устройства электроустановок. – 6-е изд. (отд. выпуска 7-го изд.). – М. : Главгосэнергонадзор России, 1998. – 608 с.

15. Прокопчик В. В. Повышение качества электроснабжения и эффективности электрооборудования предприятий с непрерывными технологическими процессами / В. В. Прокопчик. – Гомель : Гом. гос. техн. ун-т, 2002. – 283 с.

16. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. – М. : НЦ ЭНАС, 2002. – 152 с.

17. Рюденберг Р. Эксплуатационные режимы электроэнергетических систем и установок / Р. Рюденберг. – Л. : Энергия, 1981. – 576 с.

18. Содов А. В. Системы контроля, распознавания и прогнозирования электропотребления, модели, методы, алгоритмы и средства / А. В. Содов, И. И. Надтока. – Ростов-н/Д : Изд-во Рост. ун-та, 2002. – 320 с.

19. Справочная книга электрика / ред. В. И. Григорьев. – М. : Колос, 2004. – 746 с.

20. Фираго Б. И. Теория электропривода / Б. И. Фираго, Л. Б. Павлячик. – ОАО «Техноперспектива», 2004. – 527 с.

21.Харечко, В. Н. Рекомендации по молниезащите индивидуальных жилых домов, коттеджей, дачных (садовых) домов и других частных сооружений / В. Н. Харечко. – М. : ЗАО «Энергосервис», 2002. – 176 с.

22. Харечко, В. Я. Электроустановки индивидуальных жилых домов : справочник / В. Н. Харечко. – М. : ЗАО «Энергосервис», 2004. – 496 с.

23. Хохлов Ю. И. Компенсированные выпрямители с фильтрацией в коммутирующие конденсаторы нечетнократных гармоник токов преобразовательных блоков / Ю. И. Хохлов. - ЧГТУ, 1995. – 355 с.

24. Электромагнитная совместимость в электроэнергетике и электротехнике / ред. А. Ф. Дьяков. – М. : Мир; Энергоатомиздат, 2003. – 768 с.

25. Электрические нагрузки промышленных предприятий / С. Д. Волобринский, Г. М. Каялов, П. Н. Клейн и др. – Л. : Энергия, 1971. – 264 с.

26. Электроснабжение и электрооборудование цехов / В. И. Григорьев, Э. А. Киреева, В. А. Миронов, А. Н. Гохонелидзе. – М. : Энергоатомиздат, 2003. – 246 с.

27. Энергетическая стратегия России на период до 2020 года. – М. : Минэнерго России, 2001. – 544 с.

28. Энергетическая электроника : справ. пособие / пер. с нем.; ред. В. А. Лабунцов. – М. : Энергоатомиздат, 1987. – 161 с.

 

 


 

Ó Сергей Павлович Голиков

 





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:
©2015- 2020 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.