Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Особенности функционирования репликативной вилки эукариот




Механизмы репликации ДНК у высших эукариот менее изучены из-за их большей сложности. Основные результаты получены на модельной системе с ДНК вируса SV40, в которой процесс репликации исследовали в зараженных клетках человека, культивируемых in vitro. В этой системе вирусный белок, называемый Т-антигеном, выполняет многие функции, необходимые для репликации вирусной ДНК. Во-первых, он является белком-инициатором, необходимым для инициации репликации; во-вторых, он обладает ДНК-хеликазной активностью, т.е. расплетает цепи реплицируемой ДНК перед работающей ДНК-полимеразой, и, в-третьих, Т-антиген необходим для правильного взаимодействия с ДНК ферментного комплекса, синтезирующего праймеры (праймосомы). Тем не менее, вирус SV40 использует для репликации ДНК своей небольшой хромосомы и многие белки клетки-хозяина, что позволяет исследовать функционирование репликативного комплекса клеток человека в такой относительно простой системе.

У эукариот обнаружены шесть ДНК-полимераз, три из которых – a, d и e – непосредственно участвуют в репликации хромосомной ДНК (табл. I.17). Аминокислотные последовательности этих трех ферментов гомологичны друг другу и последовательности продукта гена 43 бактериофага Т4. Эукариотическая ДНК-праймаза в отличие от аналогичного белка прокариот образует постоянный комплекс с ДНК-полимеразой a, роль которого, по-видимому, ограничивается синтезом праймеров при репликации обеих цепей ДНК.

Белок PCNA и фактор репликации C (RFС) также образуют стабильный комплекс с ДНК-полимеразой d, а в определенных условиях стимулируют и активность ДНК-полимеразы e. Во многих отношениях PCNA и RFС являются функциональными аналогами соответственно b-белка и белков g-комплекса E. coli (см. рис. I.46, б), и их роль в синтезе ведущей и отстающей цепей ДНК вируса SV40 хорошо известна. Механизмы репликации ДНК прокариот и эукариот существенно различаются в том отношении, что во втором случае синтез ведущей и отстающей цепей ДНК


Таблица I.16

Эукариотические ДНК-полимеразы и их функциональные гомологи у прокариот

ДНК-полимераза Ген дрожжей Гомолог E. coli Молекулярные массы субъединиц, кДа Биологические функции
a POL1 ? 160–185 Синтез ведущей цепи геномной ДНК в репликативной вилке; в комплексе с праймазой обеспечение синтеза праймеров на обеих цепях ДНК
b   Pol I   Заполнение брешей при эксцизионной репарации ДНК, участие в рекомбинации
g MIP1 - 140 (человек) 116 (дрожжи) Репликация митохондриальной ДНК
d POL 3 Pol III   Синтез отстающей цепи геномной ДНК в репликативной вилке
e POL 2 Pol II (?) 210–230 Репарация ДНК, регуляция клеточного цикла (?)
z REV3 и REV7 Pol IV (DinB/P) 173 и 29 Синтез ДНК на поврежденной матрице при SOS-ответе
η RAD30 DinB, UmuC   Синтез ДНК на поврежденной матрице, с включением остатков А напротив тиминовых димеров
  Примечание.? - гомологи неизвестны.

осуществляют разные ДНК-полимеразы (a и d соответственно), тогда как у E. coli обе цепи ДНК синтезируются димером ДНК-полимеразы III. ДНК-полимераза a проводит инициацию синтеза ведущей цепи в точках начала репликации, а ДНК-полимераза d осуществляет циклические реинициации синтеза фрагментов Оказаки, по-видимому, распознавая наличие 5’-концевого нуклеотида очередного праймера с последующей диссоциацией от матричной ДНК и присоединением к ней для реинициации синтеза следующего фрагмента Оказаки. Созревание фрагментов Оказаки у эукариот требует удаления РНК-затравок с помощью 5’®3’-экзонуклеазы (белковые факторы FEN-1 или MF-1) и РНКазы H1, а также ковалентного соединения фрагментов друг с другом под действием ДНК-лигазы I.

Роль ДНК-полимеразы e в настоящее время не ясна. Возможно, этот фермент непосредственно участвует в репликации или в сопряженной с репликацией репарации повреждений ДНК, а также в регуляции клеточного цикла.

ДНК-полимераза z обнаружена в 1996 г. у дрожжей S. cerevisiae. При исследовании белков Rev3 и Rev7, которые необходимы для мутагенеза, индуцируемого в ответ на повреждения ДНК, оказалось, что их комплекс обладает ДНК-полимеразной активностью. Эта полимераза способна эффективно использовать в качестве матрицы ДНК, содержащую циклобутановые димеры. В таких условиях активность ДНК-полимеразы a составляет лишь 1% от активности ДНК-полимеразы z.

ДНК-полимераза η, так же как и предыдущий фермент, участвует в SOS-ответе дрожжей на генотоксические воздействия. В присутствии всех четырех дезоксирибонуклеозидтрифосфатов она осуществляет включение в строящуюся цепь ДНК напротив тиминовых димеров только правильных нуклеотидов (А). Подробнее о функциях бактериальных гомологов двух последних ДНК-полимераз в SOS-мутагенезе см. в разделе 5.1.2.

Регуляция репликации ДНК

Подробное рассмотрение молекулярных механизмов регуляции репликации ДНК выходит за рамки книги, поэтому ограничимся несколькими замечаниями по данному вопросу и более детально обсудим лишь механизм регуляции репликации у E. coli, в том числе и бактериальных плазмид, что имеет непосредственное отношение к функционированию плазмидных векторов в бактериальных клетках.

Синтез ДНК тесно связан с другими процессами, подготавливающими деление клеток, так как передача необходимой генетической информации родительских клеток дочерним является для клеток-потомков жизненно важной. Наличие избыточной генетической информации отрицательно сказывается на жизнеспособности клеток, тогда как недостаток ее, возникающий вследствие недорепликации ДНК, приводит к летальному эффекту из-за отсутствия жизненно важных генов. Однако процесс передачи генетической информации от родительских клеток дочерним у эукариот не ограничивается простой редупликацией ДНК хромосом. Так, для насекомых многих видов характерно наличие гигантских политенных хромосом, которые возникают в результате множественных раундов репликации ДНК исходных хроматид, не сопровождающейся их расхождением.

Политенизация хромосом представляет обширный класс генетических явлений, связанных с избирательной избыточной репликацией (мультипликацией) или недорепликацией отдельных генетических локусов эукариот. Ярким примером такого рода является изменение числа генов рибосомных РНК у животных. Амплификация генов рРНК в ооцитах амфибий происходит путем образования их внехромосомных (экстрахромосомных) копий в виде кольцевых молекул рибосомных (р) ДНК, которые далее реплицируются по механизму "катящегося кольца". При этом в каждой клетке амплифицируется только по одному из сотен повторов рДНК, так что амплификация рДНК на одном повторе каким-то образом подавляет процесс амплификации на других, и все образовавшиеся повторы одного ооцита идентичны, но отличаются от наборов амплифицированных рДНК других ооцитов. Строгая стадие- и тканеспецифичность, а также избирательная амплификация только одного повтора рДНК указывают на наличие тонких регуляторных механизмов процесса репликации и в этом случае.

Характерными примерами возрастания числа генов вследствие их избирательной репликации являются магнификация генов рРНК и изменение числа генов, определяющих устойчивость клеток к лекарственным препаратам. В первом случае утрата части генов рРНК у дрозофилы в результате делеции сопровождается постепенным восстановлением их числа, тогда как во втором случае у клеток, находящихся в условиях селективного действия токсичного для них лекарственного препарата, возрастает число копий генов, необходимых для его нейтрализации. В частности, это характерно для гена дигидрофолатредуктазы в присутствии метотрексата. Высказывается предположение, что в основе изменения числа копий таких генов лежит механизм неравного кроссинговера.

Репликация хромосом бактерий тесно сопряжена с метаболизмом клеток. Например, частота инициаций новых раундов репликации зависит от скорости роста бактериальных клеток, и в клетках быстро растущих бактерий могут содержаться хромосомы с несколькими работающими репликативными вилками, хотя для репликации одной бактериальной хромосомы их требуется только две, инициированные в единственной области начала репликации (ori) и расходящиеся в противоположных направлениях. Это позволяет бактериям при благоприятных условиях затратить для генерации меньше времени, чем для полной репликации бактериальной хромосомы. Очевидно, что для поддержания строго упорядоченного характера репликации должны существовать тонкие механизмы регуляции репликации на уровне инициации новых раундов. Такие механизмы, действительно, существуют.

Наиболее хорошо изученными в настоящее время являются механизмы регуляции синтеза ДНК у E. coli, в том числе механизмы контроля числа копий у небольшой плазмиды E. coli ColE1, которые будут рассмотрены ниже более подробно из-за важности этих явлений для генной инженерии.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...