Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

К проблеме различия между произвольной компонентой и необходимой частью




Различие между произвольной компонентой (Einzelin­halt) и необходимой частью (Teil) важно во многих отно­шениях; оно исследовалось во многих психологических работах последних десятилетий; многое все еще нуждается в уточнении; необходимо показать это различие на простых контрастных примерах. Здесь приведены некоторые приме­ры, на которых легко показать и изучать отдельные харак­терные особенности проблемы.

1. Нарисуйте на доске группу точек I (a bсd e) и рас­сматривайте их одновременно.

Через короткое время сотрите точки с и е (II).

Оставшиеся точки были и раньше на доске, но насколь­ко иначе выглядят они теперь 1. Рассмотрим некоторые ас­пекты того, что произошло:

Точка d справа в группе I играет ту же роль, какую играет b слева; в II b является «серединой»; а теперь сле­ва является тем, чем d справа.

На языке сетей отношений, в которых каждый произ­вольный элемент имплицитно определяется своим положе­нием в сети, b 1и d 1имели (если оставить в стороне разли­чие между правым и левым) одно и то же имплицитное значение, они были «гомологичны». Но b II является един­ственной центральной точкой, (тем, чем раньше была с I);

1 Такое переструктурирование типично для случаев, когда вы­полняются условия хорошего видения, расстояние между точками не слишком велико, и не предпринимаются специальные действия, которые могли бы привести к дезинтеграции. Эти условия сохра­няются и в дальнейших примерах.

d IIгомологично не b II, а а II. Если я обозначу отношение «гомологично» через «~», то в I b~d; d не гомологично а; в II b не гомологично d, d~a.

Сравнивая имплицитные отношения, нельзя даже обо­значать одними и теми же буквами точки в I и II (следует различать b Iи b IIи т. д.): содержание II отличается от содержания I.

(В таком исследовании имплицитных связей структур­ные характеристики представлены лишь отчасти; чего-то еще недостает; но то, что здесь подразумевается, можно легко представить аналогичным образом.)

Отличаются также и отношения. Отметим только сле­дующее: в II равенство ab и bd является не только равен­ством двух расстояний, но предполагает и симметрию; од­нако симметрия означает не только равенство расстояний, но содержит существенные характеристики отношений, определяемые свойствами целого.

Рассматривая фигуры, мы замечаем, что объективное равенство аb и bd проявляется в I иначе, чем в П. Часто при восприятии I оно не является даже очевидным (обыч­но при воспроизведении фигуры по памяти обнаруживает­ся эта особенность — подразумевается равенство аb и de, но не аb и bd).

Равенство расстояний аb и bd в II является куда более «чувствительным», чем в I; так, если в I точку d слегка сместить влево (и для сохранения симметрии точку е со­ответственно — вправо), то кажется, что ничего, в сущно­сти, не изменилось; в II же возникнет резкая асимметрия. (Сходные явления наблюдаются при других изменениях: в интенсивности, высоте и т. д.)

Можно, таким образом, видеть, что место и роль от­дельных элементов в целом имеют важное значение для понимания отношений.

2.

d c f

Сотрите c и d (II). Наряду с другими изменениями меняется пространственная ориентация фигуры (фигура наклоняется); ае и bf как параллели определяют фигуру; при нормальном восприятии первой фигуры они обычно не возникают. В I be служит основой для пространствен-

ной ориентации фигуры; в II это не так; в II эта линия часто даже не присутствует перцептивно; если же она и присутствует, то воспринимается как диагональ, гомоло­гичная аf (что не так в I); но быть диагональю — это зна­чит чем-то отличаться от линии симметрии, как в I.

В I а не гомологично 6, f не гомологично е, be не гомо­логично af; во II a~b, f~e, be~af.

3.

Рис. 165 Рис. 166

Удлините оба конца1 С в I, и вы получите П. В I А и С были «парой», В — линией симметрии; в II («угол АВ стоит на наклонной диагонали») А и В образуют «пару». (В I А~С, А не гомологично В, в II А~В.) В I В явля­ется единственной линией симметрии, определяющей общую пространственную ориентацию фигуры; в II длин­ная наклонная линия обеспечивает основную пространст­венную ориентацию (так же, как и линия — которая не «дана» в качестве элемента, - делящая симметрично угол АВ пополам, перпендикулярная наклонной линии).

В то время как в I фигура чувствительна к нарушени­ям равенства длин A и С, но не к изменению длины В, II чувствительна к нарушениям именно равенства В и А] теперь В=А играет такую же роль, какую раньше играло С=А.

Если для углов принять значение 40° (вместо 60°), то переход к II часто оказывается особенно сильным, и не только в отношении оптических характеристик: «Рисунок «искривился», он «поворачивается»! Рисунок выглядит ужасно!» И в соответствующих условиях часто возникает сильная мотивация, потребность разобраться в ситуации и «исправить дело».

1 Удлините концы сильнее, чем указано на чертеже.

Рис. 167 Рис. 168

Если мы добавим линию D, то она часто кажется бес­смысленным добавлением; ее наличие, длина, ориентация являются «случайными», «произвольными». (Того, что D = A, что углы, которые А и D образуют с 5, являются ровными, часто даже не замечают, о чем свидетельствуют воспроизведения по памяти.) В III дело обстоит иначе: в наклонной трапеции D является наклонной стороной тра­пеции, как и A. В I B ~ C, в III B не гомологично С; во II

III.

Рис. 169

А не гомологично D, в III A~D. В I В и С являются сто­ронами равнобедренного треугольника; в III В является основанием, С - - диагональю; это существенное различие.

В I равенство В=С иравенство углов, которые В т С образуют с A, являются существенными (чувствительны­ми); в III все это не так; здесь важно равенство диагона­лей и равенство углов, которые А и D образуют с В.

5.

 

Сначала есть только точки, обозначенные цифрой 1; за­тем добавьте точки, обозначенные цифрой 2, потом через короткое время — точки, обозначенные цифрой 3, и т. д. Когда добавляются точки, обозначенные цифрой 2, то обычно функция «средней точки» остается той же, что и в 1, и т. д.; но через некоторое время: «В правой части точ­ка исчезла!» (ожидание, потребность, требование). Точ­ки 3 предстают в виде на удивление «бессмысленной» на­клонной линии. Когда добавляются точки 4: «Справа воз­никает маленький ромб».

Когда добавляются точки 5 и особенно точки 6, обычно происходит сильная перецентрация: все резко меняется. Группа слева разрушается (ее центр больше не является центром...), характерные особенности всех последователь­но появлявшихся фигур теперь исчезают — все точки со­ставляют одну единую фигуру, являются частями этой фигуры. (Легко перечислить все изменения отдельных точек и т. д.)

В процессе часто проявляются мощные динамически -свойства - возникают конкретные «требования» и действия в соответствии с ними.

6. Дано:

I II

В этих двух мелодиях три ноты и их интервалы иден­тичны как «произвольные компоненты»; для слушателя (и певца) они совершенно различны. В связи с обсуждае­мым вопросом отметим только следующее:

ми в I — тоника   ре-диез в I — основной тон соль в I — малая терция (фа-бемоль) в II - повы­шение тоники (ми-бемоль) в II — тоника соль в II - большая тер­ция

Музыкальная логика требует различной нотной записи двух тонов: в II нельзя обозначить ми-бемоль как ре-диез (и наоборот).

И интервал между второй и третьей нотами в I являет­ся уменьшенной квартой, а в II — увеличенной терцией! Функциональные различия весьма характерно проявляют­ся при варьировании (изменении высоты тона ноты и т. д. во время пения).

Существенные различия между двумя этими мелодия­ми свидетельствуют также о некоторых совершенно раз­личных тонких характеристиках, но мы не будем входить в дальнейшие детали.

(Вот еще один аналогичный по форме предыдущим пример. Сыграйте сначала следующий мотив:

III

Затем возьмите после первой ноты си и в конце — ми. Тог­да вместо си-бемоль следует написать ля-диез; а вместо ми-бемоль — ре-диез; теперь первая нота является уже не доминантой, а задержанным звуком, который разрешается в доминанту; самая низкая нота является не тоникой, а основным тоном; ведущий к ней интервал больше не тер­ция, а уменьшенная кварта.)

Я провел несколько экспериментов со многими испы­туемыми по решению следующей задачи. Некоторые дети проявляли себя очень хорошо и иногда находили решение после всего лишь минутного обдумывания; другим требо­валась незначительная помощь. Однако некоторые, даже весьма умные и образованные взрослые, действовали до­вольно странно и, пытаясь найти простое решение, испы­тывали большие затруднения.

ПРИЛОЖЕНИЕ 2

Алтарное окно

Я провел несколько экспериментов со многими испытуемыми по решению следующей задачи. Некоторые дети проявляли себя очень хорошо и иногда находили решение после всего лишь минутного обдумывания; другим требовалась незначительная помощь. Однако некоторые, даже весьма умные и образованные взрослые, действовали довольно странно и, пытаясь найти простое решение, испытывали большие затруднения.

Я предлагаю читателю попытаться решить эту задачу.

Художники заняты окраской и отделкой внутренних стен церкви. Немного выше алтаря находится круглое ок­но. В декоративных целях художников попросили прове­сти две вертикальные линии, касательные к кругу и такой же высоты, что и круглое окно;

Рис. 170

затем они должны были прибавить снизу и сверху полу­круги, замыкающие фигуру. Эта поверхность между ли-

ниями и окном должна была покрываться золотом. На каждый квадратный дюйм требуется столько-то золота. Сколько потребуется золота для покрытия этой поверхно­сти (при заданном диаметре окна) или чему равна пло­щадь между окном и линиями?

Прежде чем продолжить чтение, попытайтесь найти решение. (Для этого вам не потребуются глубокие знания математики.) Решив задачу, возможно, вы с интересом узнаете об ответах, которые мы получили в экспериментах с этой задачей. Расскажу лишь о некоторых из них. Воз­можно, они доставят вам удовольствие.

Вот, например, слова одного высокообразованного ис­пытуемого: «Конечно, я должен решить ее. Посмотрим... какие теоремы об определении площадей необходимы в данном случае? Несомненно, я должен вспомнить их... Если бы только это был настоящий эллипс (пауза)... но это не эллипс... Если я разделю его, то площади этих час­тей будет легко определить. Внизу и вверху у нас полу­круги, а площадь полукругов я могу легко вычислить. Но есть еще эти четыре забавных кусочка... Какие теоремы я знаю о таких «квазитреугольниках», у которых вместо прямой стороны такой круговой сегмент?.. Не помню ни одной...» И затем после глубокого раздумья он сдался.

Другой испытуемый, столь же сообразительный и с хо­рошей подготовкой по геометрии, действовал аналогичным образом. Но, дойдя до четырех остатков странной формы, он сказал: «Площадь этих четырех фигур равна площади квадрата минус площадь круга, вписанного в квадрат... Площадь

каждого из остатков равна , это равняется а 2, умноженное на
Или не так?.. Правильно? (На это потребовалось полчаса.)

Третий начал с вычисления площади круга и вдруг воскликнул: «Как слеп я был! Как это просто! Площадь равна площади круга плюс... что? Квадрат... круг; это про­сто площадь квадрата! Отличная задача!»

Четвертый пример: десятилетний ребенок без каких-ли­бо знаний по геометрии, которые могли бы ему помочь, сказал: «Почему вы думаете, что я могу сделать это? Я не могу. Не имею ни малейшего представления, как делаются подобные вещи». Он внимательно посмотрел на рисунок, а затем спокойно сказал: «Два полукруга должны войти в «окно... Это полный квадрат». (Он не пользовался термином

«квадрат», а провел по рисунку пальцем.) На все это ушло около минуты.

Пятый: еще один мальчик, двенадцати лет, без какой-либо подготовки по геометрии, начал хвастать тем, как легко он решает такие задачи, и с большой уверенностью высказывал самые дикие предположения. Например: «Че­тыре остатка составляют четверть круга». Я сказал ему: «Не говори чепухи. Подумай немного». Он полминуты мол­чал и затем сказал: «Если вы передвинете два верхних остатка наверх и вставите их в верхний полукруг и если вы проделаете то же самое с нижними остатками, то обе части в совокупности составят квадрат! Вот так».


ПРИЛОЖЕНИЕ 3

 

Школьный инспектор

Я повторяю то, что подчеркивал в гл. 1 (и в других местах): в любой ситуации имеются элементы или черты, которые являются центральными в структуре, и другие элементы, которые таковыми не являются, будучи перифе­рическими, изменчивыми. Например, абсолютные длины вспомогательных линий параллелограмма связаны со структурной взаимосвязью не больше, чем цвет параллело­грамма.

Увидеть, постичь, понять, что является структурно центральным, а что нет, — вот самое главное во всех слу­чаях мышления. В разделе 14 гл. 1 мы привели пример, когда испытуемым была высказана гипотеза (что последо­вательные произведения возрастают на единицу), не имев­шая ничего общего со структурой, подразумеваемой в за­даче.

Чтобы пояснить этот вопрос, я приведу пример совер­шенно иного рода. Говорят, что эти события произошли в маленькой деревушке в Моравии во времена старой Авст­рийской империи. Однажды сюда приехал инспектор ми­нистерства просвещения. Проведение таких периодических проверок школ входило в его обязанности. Понаблюдав за классом, он в конце урока встал и сказал: «Дети, я рад был видеть, что вы хорошо занимаетесь. У вас хороший класс. Я удовлетворен вашими успехами. И вот, прежде чем уехать, я хочу задать вам один вопрос: «Сколько волос у лошади?» К удивлению учителя и инспектора, один девя­тилетний мальчик очень быстро поднял руку. -Мальчик сказал: «У лошади 3571962 волоса». Инспектор с удивле­нием спросил: «А откуда ты знаешь, что это точное чис­ло?» Мальчик ответил: «Если вы не верите мне, можете сосчитать сами». Инспектор разразился громким смехом, искренне радуясь ответу мальчика. Когда учитель прово­жал его к двери, он, все еще от души смеясь, сказал: «Ка­кая забавная история! Я должен рассказать ее своим кол-

легам по возвращении в Вену. Я уже предвижу, как они воспримут ее; ничто не радует их так, как хорошая шут­ка». И с этим он уехал.

Прошел год, инспектор снова приехал в ту же сельскую школу с ежегодным визитом. Когда учитель провожал его к двери, он остановился и сказал: «Между прочим, госпо­дин инспектор, как понравилась вашим коллегам история с лошадью и количеством волос у нее?» Инспектор похло­пал учителя по спине. «О да, — сказал он. — Видите ли, я действительно хотел рассказать эту историю — это была очень забавная история, — но понимаете, я не смог этого сделать. Когда я вернулся в Вену, то, хоть убейте, никак не смог вспомнить число волос».

Это выдуманная история, по крайней мере я надеюсь, что это так. Я спрашивал многих людей, после того как они прослушали рассказ: «В чем суть этой истории?» Один тип ответа: «Это действительно глупая история; этот ин­спектор мыслил так, что нарушал старые логические раз­личия между существенным и несущественным». Я сказал: «Конечно, но скажите, пожалуйста, что вы понимаете под словом «существенный»?» Большинство людей не могут объяснить это (кроме того, они не чувствуют необходимо­сти в объяснении столь очевидной вещи). А те, кто может, либо делают это очень неуклюже и довольно странно, либо приводят исторические варианты значения слова «несуще­ственный» типа «быть непостоянным» и т. п. и считают во­прос решенным, хотя в действительности это не ответ.

Некоторые отвечают правильно: «Видите ли, не имеет значения, какое количество волос названо в рассказе». Я сказал: «Правильно, но скажите, пожалуйста, почему?» И затем иногда отвечают, что число волос «несуществен­но». «Величина числа никак не связана с основной мыслью рассказа, между ними нет никакой взаимозависимости или, точнее, нет никакой осмысленной внутренней связи между всем рассказом и именно этим числом (нет ρ-отношения). Поэтому число можно варьировать в разумных пределах». Функция этого элемента, его место и роль в структуре ни­как не связаны с тем, каково именно это число. Структу­ра не предъявляет никаких функциональных требований к точности числа. Структурным требованиям удовлетворя­ет здесь любое (большое) число.

А почему этот рассказ часто воспринимается как очень хорошая шутка? Из-за удивления при виде глупой реши­мости придерживаться именно этого числа, как будто его

конкретное значение является релевантным элементом структуры. Смешно видеть столь нелепое поведение ин­спектора. Я мог бы добавить, что некоторых людей это ма­ло волнует; они не могут связать рассказ с реакцией на него; другие же, по-видимому, вообще не задумываются о том, каков был ход мышления инспектора, а говорят о воз­можных чертах его характера.

Такие личностные проблемы весьма важны, но необ­ходим и другой подход: нужно ясно понять, что означает такое поведение со структурной точки зрения. Возможно, появление такой установки мышления является в этих слу­чаях вовсе не вопросом личностной характеристики инди­вида, а тенденцией, созданной определенным типом обра­зования (основанным на определенных тенденциях теоре­тической психологии) и только преувеличенной в подоб­ной шутке.


ПРИЛОЖЕНИЕ 4

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...