Основные физические свойства жидкостей и газов
Рассмотрим некоторые свойства жидкостей, которые оказывают наиболее существенное влияние на происходящие в них процессы и поэтому учитываются при расчетах гидравлических систем. Плотность и удельный вес Важнейшими характеристиками механических свойств жидкости являются ее плотность и удельный вес. Они определяют «весомость» жидкости. Под плотностью ρ (кг/м3) понимают массу жидкости т, заключенную в единице ее объема V, т.е. ρ = m/V. Вместо плотности в формулах может быть использован также удельный вес γ (Н/м3), т.е. вес G, приходящийся на единицу объема V: γ =G/V. Плотность и удельный вес жидкости связаны между собой. Эта связь легко устанавливается, если учесть, что G = mg: γ =G/V = mg/V = ρ g. Изменения плотности и удельного веса жидкости при изменении температуры и давления незначительны, и в большинстве случаев их не учитывают. Плотности наиболее употребляемых жидкостей и газов (кг/м3): бензин — 710...780; керосин — 790...860; вода — 1000; ртуть — 13600; масло гидросистем (АМГ-10) — 850; масло веретенное — 890...900; масло индустриальное — 880...920; масло турбинное — 900; метан — 0,7; воздух — 1,3; углекислый газ — 2,0; пропан — 2,0. Вязкость
Вязкость — это способность жидкости сопротивляться сдвигу, т. е. свойство, обратное текучести (более вязкие жидкости являются менее текучими). Вязкость проявляется в возникновении касательных напряжений (напряжений трения). Рассмотрим слоистое течение жидкости вдоль стенки (рисунок 1.3). В этом случае происходит торможение потока жидкости, обусловленное ее вязкостью. Причем скорость движения жидкости в слое тем ниже, чем ближе он расположен к стенке. Согласно гипотезе Ньютона касательное напряжение, возникающее в слое жидкости на расстоянии у от стенки, определяется зависимостью
(1.5) где dυ/dy — градиент скорости, характеризующий интенсивность нарастания скорости υ при удалении от стенки (по оси у). Зависимость (1.5) называют законом трения Ньютона. Течения большинства жидкостей, используемых в гидравлических системах, подчиняются закону трения Ньютона, и их называют ньютоновскими жидкостями. Однако следует иметь в виду, что существуют жидкости, в которых закон (1.5) в той или иной степени нарушается. Такие жидкости называют неньютоновскими. Величина μ, входящая в (1.5), получила название динамической вязкости жидкости. Она измеряется в Паּс либо в пуазах 1 Пз = 0.1 Па ּс. Однако на практике более широкое применение нашла кинематическая вязкость: . (1.6) Единицей измерения последней в системе СИ является м2/с или более мелкая единица см2/с, которую принято называть стоксом, 1 Ст = 1 см2/с. Для измерения вязкости также используются сантистоксы: 1 сСт = 0,01 Ст. Вязкость жидкостей существенно зависит от температуры, причем вязкость капельных жидкостей с повышением температуры падает, а вязкость газов — растет (рисунок 1.4). Это объясняется тем, что в капельных жидкостях, где молекулы расположены близко друг к другу, вязкость обусловлена силами молекулярного сцепления. Эти силы с ростом температуры ослабевают, и вязкость падает. В газах молекулы располагаются значительно дальше друг от друга. Вязкость газа зависит от интенсивности хаотичного движения молекул. С ростом температуры эта интенсивность растет и вязкость газа увеличивается. Вязкость жидкостей зависит также от давления, но это изменение незначительно, и в большинстве случаев его не учитывают.
Сжимаемость
Сжимаемость — это способность жидкости изменять свой объем под действием давления. Сжимаемость капельных жидкостей и газов существенно различается. Так, капельные жидкости при изменении давления изменяют свой объем крайне незначительно. Газы, наоборот, могут значительно сжиматься под действием давления и неограниченно расширяться при его отсутствии.
Для учета сжимаемости газов при различных условиях могут быть использованы уравнения состояния газа или зависимости для политропных процессов [4]. Сжимаемость капельных жидкостей характеризуется коэффициентом объемного сжатия βр (Па-1): , где dV— изменение объема под действием давления; dр - изменение давления; V — объем жидкости. Знак минус в формуле обусловлен тем, что при увеличении давления объем жидкости уменьшается, т.е. положительное приращение давления вызывает отрицательное приращение объема. При конечных приращениях давления и известном начальном объеме V0 можно определить конечный объем жидкости , (1.8) а также ее плотность (1.9) Величина, обратная коэффициенту объемного сжатия βр, называется объемным модулем упругости жидкости (или модулем упругости) К = 1/ βр (Па). Эта величина входит в обобщенный закон Гука, связывающий изменение давления с изменением объема (1.10) Модуль упругости капельных жидкостей изменяется при изменении температуры и давления. Однако в большинстве случаев K считают постоянной величиной, принимая за нее среднее значение в данном диапазоне температур или давлений. Модули упругости некоторых жидкостей (МПа): бензин — 1300; керосин — 1280; вода — 2000; ртуть — 32400; масло гидросистем (АМГ-10) — 1300; масло индустриальное 20 - 1360; масло индустриальное 50 - 1470; масло турбинное — 1700.
Температурное расширение
Способность жидкости изменять свой объем при изменении температуры называется температурным расширением. Оно характеризуется коэффициентом температурного расширения βt (1.11) где dT — изменение температуры; dV— изменение объема под действием температуры; V — объем жидкости. При конечных приращениях температуры , (1.12) . (1.13) Как видно из формул (1.12), (1.13) с увеличением температуры объем жидкости возрастает, а плотность уменьшается. Коэффициент температурного расширения жидкостей зависит от давления и температуры, так для воды при t = 0 0C и p = 0,1 МПа βt = 14·10 –6 1/град, а при t = 100 0C и p = 10 МПа βt = 700·10 –6 1/град, то есть изменяется в 50 раз. Однако на практике обычно принимают среднее значение в данном диапазоне температур и давления. Например, для минеральных масел
βt ≈ 800·10 –6 1/град. Газы весьма значительно изменяют свой объем при изменении температуры. Для учета этого изменения используют уравнения состояния газов или формулы политропных процессов [4].
Испаряемость
Любая капельная жидкость способна изменять свое агрегатное состояние, в частности превращаться в пар. Это свойство капельных жидкостей называют испаряемостью. В гидравлике наибольшее значение имеет условие, при котором начинается интенсивное парообразование по всему объему — кипение жидкости. Для начала процесса кипения должны быть созданы определенные условия (температура и давление). Например, дистиллированная вода закипает при нормальном атмосферном давлении и температуре 100 °С. Однако это является частным случаем кипения воды. Та же вода может закипеть при другой температуре, если она будет находиться под воздействием другого давления, т. е. для каждого значения температуры жидкости, используемой в гидросистеме, существует свое давление, при котором она закипает. Такое давление называют давлением насыщенных паров рн.п... Величина рнп всегда приводится как абсолютное давление и зависит от температуры. Для примера на рисунке 1.5 приведена зависимость давления насыщенных паров воды от температуры. На графике выделена точка А, соответствующая температуре 100 °С и нормальному атмосферному давлению ра. Если на свободной поверхности воды создать более высокое давление р1, то она закипит при более высокой температуре Т1 (точка В на рисунке 1.5). И наоборот, при малом давлении р2 вода закипает при более низкой температуре Т2 (точка С на рисунке 1.5). Растворимость газов Многие жидкости способны растворять в себе газы. Эта способность характеризуется количеством растворенного газа в единице объема жидкости, различается для разных жидкостей и изменяется с увеличением давления.
Относительный объем газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри прямо пропорциональным давлению, то есть Vг /Vж = k p/p0, где Vг – объем растворенного газа, приведенный к нормальным условиям (p0, Т0 ); Vж – объем жидкости; k - коэффициент растворимости; р - давление жидкости. Коэффициент k имеет следующие значения при 20 0С: для воды – 0,016, керосина - 0,13 минеральных масел - 0,08, жидкости АМГ-10 – 0,1. При понижении давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворяется в ней. Это явление может отрицательно сказывается на работе гидросистем. ГИДРОСТАТИКА
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|