Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Относительный покой жидкости




 

Под относительным покоем понимают неподвижное состояние жидкости относительно сосуда, который движется с постоянным ускорением. Например, в относительном покое может находиться жидкость в емкости, которая установлена на разгоняющейся транспортной машине (топливный бак автомобиля). В относительном покое будет также находиться жидкость в сосуде, вращающемся с постоянной скоростью.

Законы, действующие при относительном покое жидкости, принципиально не отличаются от ранее рассмотренных законов гидростатики. Но если в ранее рассмотренных случаях на жидкость действовала только одна массовая сила — сила тяжести, то при относительном покое появляется новая — сила инерции. Это приводит к изменению положения свободной поверхности жидкости и изменению давлений в различных ее точках.

Анализ относительного покоя удобно проводить для сил, действующих на условную частицу жидкости единичной массы (массой т = 1). При таком подходе сила всегда численно равна соответствующему ускорению. Например, на частицу единичной массы действует сила тяжести G = mg =1 g = g. Таким образом, математические зависимости существенно упрощаются.

Рассмотрим прямолинейное движение сосуда с постоянным ускорением (или замедлением) а. В этом случае на каждую частицу жидкости единичной массы действуют две силы: сила тяжести g сила инерции а (рисунок 2.9). Равнодействующая этих двух сил

(2.12)

определяет положение свободной поверхности жидкости, так как угол между этой поверхностью и силой всегда составляет 90°. Изгеометрических соображений (см. рисунок 2.9) следует, что положение свободной поверхности может быть задано углом α, значение которого найдем из отношения

tga = а/g.

Для определения давления в произвольно выбранной точке на расстоянии l от свободной поверхности используется математическая зависимость

p = p0 + l ρ j. (2.13)

Она получена тем же методом, что и основное уравнение гидростатики, но учитывает действие не только сил тяжести, но и сил инерции.

 
 

Эта зависимость является более общей, чем основной закон гидростатики, который может быть получен из нее как частный случай. Действительно, при а= 0 из (2.12) следует j = g. Тогда c учетом l = h из (2.13) получим формулу (2.1), т.е. основное уравнение гидростатики.

 
 

Другим случаем относительного покоя жидкости является вращение сосуда с постоянной угловой скоростью ω (рисунок 2.10). При вращении на каждую частицу жидкости единичной массы, расположенную на радиусе r, также действуют две силы: сила тяжести g и сила инерции, вызванная центробежным ускорением, а = ω 2 r. Равнодействующая этих двух сил

определяет положение свободной поверхности жидкости. Но в рассматриваемом случае центробежное ускорение является переменной величиной, так как зависит от радиуса расположения точки. Поэтому поверхность вращения принимает параболическую форму и описывается уравнением

,

где z0 — высота расположения точки свободной поверхности относительно дна сосуда;

h 0 — высота жидкости на оси вращения.

Формула для определения давления р в любой точке жидкости может быть получена методом, использованным в подразделе 2.1. Тогда после математических преобразований найдем давление в точке, расположенной на радиусе r и высоте z относительно дна сосуда:

. (2.14)

На практике часто встречается другой частный случай — вращение сосуда с очень высокой скоростью. В этом случае центробежные силы существенно больше сил тяжести и жидкость отбрасывается центробежными силами к стенкам сосуда (рисунок 2.11), а ее свободная поверхность располагается на радиусе r0. Тогда некоторыми геометрическими величинами, входящими в формулу (2.12), можно пренебречь и формула для определения давления упрощается:

. (2.15)

Следует отметить, что формула (2.14) получена для сосуда, имеющего вертикальную ось вращения, а формула (2.15) применима для вращающихся сосудов с любым расположением оси в пространстве.


3 КИНЕМАТИКА И ДИНАМИКА ЖИДКОСТИ

 

Основные понятия и определения

 

Уравнения кинематики и динамики жидкости весьма значительно отличаются от аналогичных уравнений для твердого тела. Это вызвано, прежде всего, особенностями исследуемого объекта - жидкости, частицы которой не имеют жесткой связи между собой. Отсутствие жесткой связи существенно усложняет рассмотрение процессов, происходящих в жидкости. Для упрощения изучения течений в гидромеханике широко используется так называемая идеальная жидкость. Под этим термином понимают гипотетическую несжимаемую жидкость, в которой отсутствуют силы межмолекулярного взаимодействия, то есть отсутствует вязкость. Тогда происходящие явления сначала исследуются применительно к идеальной жидкости, а затем полученные закономерности переносятся с введением корректирующих поправок на потоки реальных жидкостей.

Течение жидкости, как и любое другое движение, может быть установившимся и неустановившимся. Установившимся называется течение, при котором все физические параметры (скорость, давление и другие) зависят только от координат точки и остаются неизменными во времени, то есть р = f1 (х,y,z), υ = f2 (х,y,z), . Примером установившегося течения может служить истечение через отверстие в дне сосуда, в котором поддерживается постоянный уровень жидкости, или движение жидкости в трубопроводе, создаваемое центробежным насосом с постоянной частотой вращения вала. В частном случае установившееся течение может быть равномерным, когда скорость каждой частицы не изменяется с изменением ее координаты, и поле скоростей остается неизменным вдоль потока. При неустановившемся течении физические параметры потока (или некоторые из них) изменяются в пространстве и во времени. В общем случае неустановившегося течения давление и скорость зависят как от координат, так и от времени: р = F1 (х,y,z,τ), v = F2 (х,y,z,τ). Для примера можно привести рассматриваемое выше истечение, но без поддержания постоянного уровня жидкости в сосуде, то есть истечение до полного опорожнения или в напорной трубе поршневого насоса, поршень которого совершает возвратно-поступательное движение. В дальнейшем будут рассматриваться в основном установившиеся течения жидкости.

Для описания движения в механике жидкости существуют разные подходы, в которых рассматриваются различные модели сплошной среды и соответствующие им уравнения движения (Коши, Эйлера и другие). В машиностроительной гидравлике поток жидкости принято представлять как совокупность элементарных замкнутых объемов, движущихся совместно. Важное значение в этой модели имеет понятие «линия тока». Под этим термином понимают условную линию в потоке жидкости, проведенную так, что вектор скорости в любой ее точке направлен по касательной (линия 1 на рисунке 3.1). При установившемся течении линия тока совпадает с траекторией движения частицы жидкости. Необходимо также отметить, что при установившемся течении в любой точке потока существует только одна (неизменная во времени) скорость. Поэтому через данную точку может проходить только одна линия тока. Следовательно, линии тока при установившемся течении не могут пересекаться.

Если в потоке жидкости взять бесконечно малую замкнутую линию 2 (смотри рисунок 3.1), состоящую из множества точек, и через каждую из этих точек провести линию тока 3, то множество этих линий образуют трубчатую поверхность. Такую поверхность принято называть трубкой тока, а часть потока внутри этой поверхности — элементарной струйкой.

Как было отмечено ранее, при установившемся течении линии тока не пересекаются и, следовательно, ни одна линия тока не может пронизывать трубку тока (иначе она пересечет одну из линий, образующих эту трубку). Следовательно, ни одна частица жид­кости не может проникнуть внутрь трубки тока или выйти из нее. Таким образом, выделенная трубка тока при установившемся течении является непроницаемой стенкой для жидкости.

Сечениями потока (или струйки) жидкости принято называть поверхности, нормальные к линиям тока. Например, поверхность dS1, ограниченная замкнутым контуром 2 (затемнена на рисунке 3.1), является сечением для элементарной струйки. При параллельно-струйном течении сечения представляют собой плоскости, перпендикулярные направлению движения жидкости. Сечения потоков или струй жидкости иногда также называют живыми сечениями.

Различают напорные и безнапорные течения жидкости. Напорными называют течения в закрытых руслах без свободной поверхности, а безнапорными — течения со свободной поверхностью. Примерами напорного течения могут служить течения в трубопро­водах, гидромашинах, гидроаппаратах. Безнапорными являются течения в реках, открытых каналах. В данном учебном пособии рассматриваются в основном напорные течения жидкости.

 

Расход. Уравнение расхода

 

Расход — это количество жидкости, которое протекает через данное сечение в единицу времени. Количество жидкости можно измерять в единицах объема, массы или веса. Поэтому различают объемный Q3/с), массовый QЬ кг/с) и весовой QG (Н/с) расходы.

Для элементарной струйки, имеющей бесконечно малые площади сечений, можно считать скорость υ одинаковой во всех точках сечения. Следовательно, объемный расход для элементарной струйки dQ = υ dS.

Основываясь на законе сохранения вещества и полагая, что течение внутри элементарной струйки является сплошным и неразрывным, можно утверждать, что для установившегося течения несжимаемой жидкости

dQ = υ1 dS1 = υ2 dS2 = const. (3.1)

Это уравнение называется уравнением объемного расхода для элементарной струйки.

Для потока конечных размеров скорость в общем случае имеет различные значения в разных точках сечения, поэтому расход определяют как сумму элементарных расходов струек, составляющих поток.

(3.2)

На практике удобнее определять расход через среднюю по сечению потока скорость υср = Q / S, откуда Q = υср ·S.

Очевидно, что и для потока конечных размеров при условии его сплошности и неразрывности будет выполняться условие постоянства объемного расхода вдоль потока, то есть

Q = υср1 ·S1 = υср2 ·S2 = const. (3.3)

Из последнего уравнения следует, что средние скорости в потоке несжимаемой жидкости обратно пропорциональны площадям сечений

. (3.4)

Полученные уравнения расходов (3.1) и (3.3) являются следствием общего закона сохранения вещества.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...