Пример треугольника Лаунхардта
В географии металлургической промышленности достаточно много примеров размещения предприятий, соответствующих треугольнику Лаунхардта. В частности, таким примером можно считать размещение Череповецкого металлургического комбината в Вологодской области: железная руда поступает на комбинат с запада (Оленегорское и Ковдорское месторождения в Мурманской области и Костамукшское месторождение в Карелии), каменный уголь с востока (Печорский угольный бассейн — Воркута и Инта), основные потребители готовой продукции находятся южнее предприятия (в Центральном экономическом районе).
3. Теория промышленного штандорта А. Вебера (теория Вебера и Кристаллера) Основной труд немецкого экономиста и социолога А. Вебера "О размещении промышленности: чистая территория штандорта" был опубликован в 1909 г. Ученый поставил перед собой дачу создать общую "чистую" теорию размещения производства на основе рассмотрения изолированного предприятия. А. Вебер создал подробную классификацию факторов размещения по их влиянию, степени общности и проявлениям. Фактором размещения он называет экономическую выгоду, "которая выявляется для хозяйственной деятельности в зависимости от места, где осуществляется эта деятельность. Эта выгода заключается в сокращении издержек по производству и сбыту определенного промышленного продукта и означает, следовательно, возможность изготовлять данный продукт в одном каком-либо месте меньшими издержками, чем в другом месте". В результате отсеивания элементов производственных издержек, не зависящих от местоположения, А. Вебер оставляет три фактора: издержки на сырые материалы, издержки на рабочую силу и транспортные издержки. Однако первый из них — разницу в ценах на используемые материалы — можно, как считает Вебер, выразить в различиях транспортных издержек, исключив из самостоятельного анализа. Все остальные условия, включающие размещение предприятия, он рассматривает как некоторую "объединенную агломерационную силу", или третий штандортный фактор. Таким образом, в конечном счете анализируются три фактора: транспорт, рабочая сила и агломерация.
Транспортная ориентация. Согласно Веберу, величина транспортных издержек зависит от веса перевозимых грузов и расстояния перевозки. Под влиянием транспортных издержек промышленное предприятие будет притягиваться к тому пункту, в котором с учетом местоположения потребительского центра и источников сырья транспортные издержки минимальны. Этот пункт есть транспортный штандорт (транспортный пункт). Для его нахождения используется весовой (локационный) треугольник В. Лаунхардта. При этом важную роль играют два показателя: материальный индекс и штандортный вес. Например, для производства 100 т продукта требуется 300 т одного материала и 200 т другого. Тогда материальный индекс будет равен (300 + 200): 100 = 5. Штандортный вес составит 300 + 200 + 100 = 600 (т), или 6 в пересчете на 1т готового продукта, т.е. штандортный вес равен материальному индексу плюс единица. Существуют производства, у которых материальный индекс меньше единицы. Исходя из соотношения указанных показателей легко установить, что производства с высоким материальным индексом тяготеют к пунктам производства сырья материалов, а производства с небольшим индексом ― к центру потребления. Рабочая ориентация. Далее, учитывая различия в издержках на рабочую силу (рабочих издержек), определяется рабочий пункт, т.е. пункт с наименьшими рабочими издержками. Рабочий пункт будет притягивать производство к себе, в результате чего производство либо останется в транспортном пункте, либо переместится в рабочий пункт. Такое перемещение может произойти тогда, когда экономия на рабочих издержках в данном пункте перекрывает перерасход в транспортных затратах из-за перемещения производства.
Для определения промышленного штандорта с учетом совместного влияния факторов транспортных издержек и рабочей силы А. Вебер прибегает к построениям так называемых изодапан (isodapane), смысл которых заключается в следующем. Приросты транспортных затрат, обусловленные перемещением производства из транспортного пункта в рабочий, увеличиваются с удалением от транспортного пункта, причем более или менее равномерно в любом направлении удаления. Поэтому в каждом направлении должны существовать пункты, для которых приросты транспортных затрат (или издержки отклонения) будут одинаковыми. Линии, соединяющие эти пункты одинаковых издержек отклонения, и называются изодапанами. Допущения общего равновесия:
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|