Сложение комплексных чисел
Пример 1 Сложить два комплексных числа , Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части: Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях. Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части. Для комплексных чисел справедливо правило первого класса: – от перестановки слагаемых сумма не меняется. Вычитание комплексных чисел Пример 2 Найти разности комплексных чисел и , если , Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака: Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная: . Для наглядности ответ можно переписать так: . Рассчитаем вторую разность: Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью: . Вот здесь без скобок уже не обойтись. Умножение комплексных чисел Настал момент познакомить вас со знаменитым равенством: Пример 3 Найти произведение комплексных чисел , Очевидно, что произведение следует записать так: Следует раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что и быть внимательным. Повторим, omg, школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.
Я распишу подробно: Надеюсь, всем было понятно, что Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках. Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство: . В учебной литературе и на просторах Сети легко найти специальную формулу для вычисления произведения комплексных чисел. Если хотите, пользуйтесь, но мне кажется, что подход с умножением многочленов универсальнее и понятнее. Формулу приводить не буду, считаю, что в данном случае – это забивание головы опилками. Деление комплексных чисел Пример 4 Даны комплексные числа , . Найти частное . Составим частное: Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение. Вспоминаем формулу и смотрим на наш знаменатель: . В знаменателе уже есть , поэтому сопряженным выражением в данном случае является , то есть Согласно правилу, знаменатель нужно умножить на , и, чтобы ничего не изменилось, домножить числитель на то же самое число : Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться формулой (помним, что и не путаемся в знаках!!!). Распишу подробно: Пример я подобрал «хороший», если взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде . В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы: . Для любителей порешать приведу правильный ответ: Пример 5 Дано комплексное число . Записать данное число в алгебраической форме (т.е. в форме ). Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю выражение. Снова смотрим на формулу . В знаменателе уже есть , поэтому знаменатель и числитель нужно домножить на сопряженное выражение , то есть на :
Пример 6 Даны два комплексных числа , . Найти их сумму, разность, произведение и частное. Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|