Требования к выполнению контрольной работы
⇐ ПредыдущаяСтр 3 из 3
К оформлению работ предъявляются следующие требования: 1. Работа выполняется в тетради со свободными полями для замечаний рецензента. 2. На обложке тетради должны быть указаны фамилия и инициалы студента, номер зачетной книжки, шифр, номер специальности, срок обучения, название дисциплины. 3. Контрольная работа должна содержать все задачи своего варианта, расположенные в порядке, указанном в задании. Перед решением каждой задачи должны приводиться ее условия. 4. Решение следует излагать подробно и аккуратно, делая необходимые объяснения и иллюстрации. 5. В случае получения от рецензента незачтенной работы следует исправить все отмеченные ошибки, внести необходимые исправления и прислать работу для повторной проверки. Рекомендуется при выполнении работы оставлять в конце тетради несколько чистых листов для внесения возможных исправлений после ее рецензирования. Варианты контрольных заданий приведены в конце каждого из разделов, раскрывающих каждую из перечисленных тем. Список литературы
1. Грес П.В. Математика для гуманитариев: Учебное пособие.- М.: Логос, 2006. 2. ДАНКО П.Е., ПОПОВ А.Г., КОЖЕВНИКОВА Т.Я. Высшая математика в упражнениях и задачах. М.: Высшая школа, 2006. 3. ЕРМАКОВ В.И. Сборник задач по высшей математике для экономистов: учебное пособие. М.:Инфра-М, 2005. 4. Красс М.С. Математика для экономистов: Учебное пособие/ М.С.Красс, Б.П.Чурынов.- СПб: Питер, 2004. 5. КРЕМЕР Н.Ш., ПУТКО Б.А., ТРИШИН Н.М., ФРИДМАН Н.М. Высшая математика для экономистов. М.: Банки и биржи, ЮНИТИ, 2008. ШИПАЧЕВ В.С. Высшая математика. М.: Высшая школа, 2005. Приложение 1 Содержание дисциплины (извлечение из рабочей программы дисциплины)
Тема 1. Введение в анализ функций одной переменной. Множества. Грани числовых множеств. Абсолютная величина числа. Понятие функции. Классификация функций. Предел последовательности. Теоремы о сходящихся последовательностях. Действия с пределами. Бесконечно малые и бесконечно большие последовательности. Теоремы о сумме (разности), произведении и частном сходящихся последовательностей. Предельный переход в неравенствах. Монотонные последовательности. Число ℮. Предел функции в точке, Теоремы о пределах функции. Первый и второй замечательные пределы. Бесконечно малые и бесконечно большие функции. Сравнение бесконечно малых функций. Асимптотические формулы. Непрерывность функции в точке. Классификация точек разрыва. Основные свойства непрерывных функций. Понятие сложной и обратной функций. Тема 2. Дифференциальное исчисление функции одной переменной. Понятие производной, ее геометрический, механический и экономический смысл. Понятие дифференцируемости функции. Связь между понятиями дифференцируемости и непрерывности. Понятие дифференциала. Правила дифференцирования. Производная постоянной функции. Производные тригонометрических функций. Производная логарифмической функции. Производная обратной функции. Производная сложной функции. Вычисление производных показательных и обратных тригонометрических функций. Логарифмическая производная. Производная степенной функции. Таблица простейших элементарных функций. Дифференцирование функции заданной параметрически. Некоторые приложения к экономике. Теоремы Ферма, Ролля, Лагранжа, Коши и их геометрический смысл. Теорема Лопиталя. Теорема Тейлора. Признак монотонности. Необходимые и достаточные условия локального экстремума. Направления выпуклости и точки перегиба графика функции. Необходимое и достаточное условия точки перегиба. Асимптоты графика функции. Схема исследования функции и построения графика.
РАЗДЕЛ 2. МАТЕМАТИЧЕСКИЙ АНАЛИЗ:ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЯ. Тема 2.1. Неопределенный интеграл. Первообразная и неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов. Непосредственное интегрирование. Метод подстановки. Метод интегрирования по частям. Интегрирование рациональных функций. Интегрирование некоторых иррациональных функций. Универсальная тригонометрическая подстановка. Частные тригонометрические подстановки. Вычисление интегралов от четных и нечетных степеней синуса и косинуса. Интегрирование иррациональностей с помощью тригонометрических подстановок.
Тема 2.2. Определенный интеграл. Понятие определенного интеграла, суммы Дарбу. Необходимое и достаточное условие интегрируемости. Некоторые классы интегрируемых функций. Свойства определенного интеграла. Теорема о среднем. Интеграл с переменным верхним пределом. Формула Ньютона- Лейбница. Замена переменной в определенном интеграле. Формула интегрирования по частям в определенном интеграле. Некоторые приложения определенного интеграла. Несобственные интегралы первого и второго родов. Формулы прямоугольников, трапеций, Симпсона (парабол). Тема 2.3. Функции нескольких переменных. Понятие функции нескольких переменных. Непрерывность функции нескольких переменных. Частные производные. Определение дифференцируемости. Дифференциал функции нескольких переменных и его геометрический смысл. Производная сложной функции. Векторный анализ элементы теории поля. Скалярное поле Производная по направлению. Градиент. Векторное поле. Экстремумы функций. Необходимое условие экстремума. Достаточное условие экстремума. Метод наименьших квадратов. Формула Тейлора. Вогнутые функции.
Тема 2.4. Двойной интеграл. Двойные интегралы. Определение и условие существования. Геометрический смысл двойного интеграла. Свойства двойного интеграла. Сведение двойного интеграла к повторному. Замена переменных в двойном интеграле. Интегрирование по неограниченным областям. Интеграл Эйлера-Пуассона. Некоторые приложения двойных интегралов. Приложение 2
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|