Самостоятельные задания по теме
Стр 1 из 6Следующая ⇒ Герела Т.А.
СТАТИСТИКА Методические рекомендации по выполнению практических работ Санкт-Петербург, 2014 Организация-разработчик: Санкт-Петербургское государственное бюджетное профессиональное образовательное учреждение «Колледж «Императорский Александровский лицей»
Методические рекомендации для выполнения практических работ по дисциплине «Статистика» рассмотрены методическим советом колледжа и рекомендованы для использования в учебном процессе – протокол № 1 от 28.08.2014.
Методист колледжа А.Ф. Жмайло
Часть 1. Теоретическая статистика Тема 1. Абсолютные и относительные статистические величины
Методические указания по теме Задача 1. Расход топлива на производственные нужды предприятия характеризуется в отчетном периоде следующими данными:
Определить общее количество потребленного условного топлива (1 т.у.т. = 29,3 МДж/кГ) по плану и фактически, а также процент выполнения плана по общему расходу топлива. Решение. Учитывая стандартную теплотворную способность 29,3 МДж/кГ, определяем количество потребленного условного топлива каждого вида по плану (X’1i) и фактически (X1i): – дизельное топливо: X’1дт = 41,9/29,3*1000 = 1430,034 т.у.т. дизельное топливо: X1дт = 41,9/29,3*1050 = 1501,536 т.у.т.; – мазут: X’1м = 40,1/29,3*750 = 1026,451 т.у.т. мазут: X1м = 40,1/29,3*730 = 999,078 т.у.т.; – уголь: X’1у = 26,4/29,3*500 = 450,512 т.у.т. уголь: X1у = 26,4/29,3*555 = 500,068 т.у.т. Суммируя количество потребленного условного топлива каждого вида, получим общее количество потребленного условного топлива:
– по плану X’1 = ∑ X’1i = 2906,997 т.у.т.; – фактически X1 = ∑ X1i = 3000,682 т.у.т. Для определения процента выполнения плана необходимо рассчитать индекс выполнения плана, то есть отношение значений по факту и плану отчетного периода:
Применяя формулу (1), имеем: Задача 2. Рассчитать индекс и темп изменения, если в марте произведено продукции 130 тонн, а в феврале 100 тонн. Решение. Индекс изменения (динамики) характеризует изменение какого-либо явления во времени. Он представляет собой отношение значений одной и той же абсолютной величины в разные периоды времени. Данный индекс определяется по формуле (2):
где подиндексы означают: 1 — отчетный или анализируемый период, 0 — прошлый или базисный период. Критериальным значением индекса динамики (темпа роста) служит единица, то есть если Темп изменения (прироста) определяется по формуле (3):
Применяя формулу (3), имеем: Т = 1,3 – 1 = 0,3 (или 30%), то есть объем произведенной продукции вырос в марте по сравнению с февралем на 30%. Задача 3. Рассчитать индексы планового задания, выполнения плана и динамики, если выпуск продукции в отчетном году составил 100 млн. рублей, на следующий год планировалось 140 млн. рублей, а фактически получено 112 млн. рублей. Решение. Индекс планового задания – это отношение значений одной и той же абсолютной величины по плану анализируемого периода и по факту базисного. Он определяется по формуле (4):
где X’1 — план анализируемого периода; X0 — факт базисного периода. Применяя формулу (4) имеем:
Индекс выполнения плана определим, применяя формулу (1): Индекс динамики можно определить по формуле (2) или перемножая индексы планового задания и выполнения плана, то есть Задача 4. Суммарные денежные доходы россиян в 2005 г. составили 13522,5 млрд. руб., из которых 8766,7 млрд. руб. составила оплата труда, 1748,4 млрд. руб. – социальные выплаты, 1541,7 млрд. руб. – доход от предпринимательской деятельности, 1201,5 млрд. руб. – доходы от собственности, остальное – прочие доходы. Рассчитать относительные величины структуры и координации, приняв за основу оплату труда. Построить секторную (круговую) диаграмму структуры доходов. Решение. Индекс структуры (доля) – это отношение какой-либо части величины (совокупности) ко всему ее значению. Он определяется по формуле (5):
Применяя формулу (5) и округляя значения до 3-х знаков после запятой, имеем: – доля оплаты труда dОТ = 8766,7/13522,5 = 0,648 или 64,8%; – доля социальных выплат dСВ =1748,4/13522,5 = 0,129 или 12,9%; – доля доходов от предпринимательской деятельности dПД =1541,7/13522,5 = 0,114 или 11,4%; – доля доходов от собственности dДС =1201,5/13522,5 = 0,089 или 8,9%. Долю прочих доходов найдем, используя формулу (6), согласно которой сумма всех долей равна единице:
Таким образом, доля прочих доходов dпроч = 1 – 0,648 – 0,129 – 0,114 – 0,089 = 0,020 или 2,0%.
Индекс координации – это отношение какой-либо части величины к другой ее части, принятой за основу (базу сравнения). Он определяется по формуле (7):
Применяя формулу (7) и принимая за основу оплату труда, имеем: – индекс координации социальных выплат – индекс координации предпринимательского дохода – индекс координации доходов от собственности – индекс координации прочих доходов Таким образом, социальные выплаты составляют 19,9% от оплаты труда, предпринимательский доход – 17,6%, доходы от собственности – 13,7%, а прочие доходы – 3,1%. Задача 5. Запасы воды в озере Байкал составляют 23000 км3, а в Ладожском озере 911 км3. Рассчитать относительные величины сравнения запасов воды этих озер.
Решение. Индекс сравнения – это отношение значений одной и той же величины в одном периоде или моменте времени, но для разных объектов или территорий. Он определяется по формуле (8):
где А, Б — признаки сравниваемых объектов или территорий. Применяя формулу (8) и принимая за объекты А и Б, соответственно, озера Байкал и Ладожское, найдем индекс сравнения: Меняя базу сравнения, найдем индекс сравнения Ладожского озера с Байкалом по той же формуле:
Задача 6. Рассчитать относительную величину интенсивности валового внутреннего продукта (ВВП) в сумме 1416,1 млрд. $ на душу населения в России в 2004 году при численности населения в 144,2 млн. человек. Решение. Показатель интенсивности – это отношение значений двух разнородных абсолютных величин для одного периода времени и одной территории или объекта. Он определяется по формуле (9):
Применяя формулу (9) имеем: iИН = 1416,1/0,1442 = 9820,39 $/чел в год. Самостоятельные задания по теме Вариант 1. Определить общее производство моющих средств в условных тоннах (условная жирность 40%) по плану и фактически, а также процент выполнения плана по следующим данным:
Вариант 2. По данным о численности жителей двух крупнейших городов России (тыс. чел) определить индексы сравнения и динамики.
Вариант 3. 1. По плану на 2012 год намечалось увеличение товарооборота на 3%. В 2012 году плановое задание перевыполнили на 600 млн. руб. или на 2,5%. Определить фактический прирост товарооборота (в млн. руб.) в 2012 году по сравнению с 2011 годом. 1. По данным о товарообороте из предыдущей задачи, состоящего из реализации собственной продукции и продажи покупных товаров, определить относительные величины координации и структуры собственной и покупной продукции в 2011 и 2012 годах, если известно, что доля собственной продукции в 2011 году составила 65%, а в 2012 году она увеличилась на 10%.
Вариант 4. Жилищный фонд и численность населения России следующие (на начало года):
Охарактеризовать изменение обеспеченности населения жилой площадью с помощью относительных величин динамики и координации. Вариант 5. 1. В России в 2004 численность женщин составила 77144,3 тыс. чел, а мужчин – 67023,9 тыс. чел. Рассчитать относительные величины структуры и координации. 2. По плану объем продукции в отчетном году должен возрасти по сравнению с прошлым годом на 2,5%. План выпуска продукции перевыполнен на 3,0%. Определить фактический выпуск продукции в отчетном году, если известно, что объем продукции в прошлом году составил 25,3 млн. руб. Вариант 6. Определить общий объем фактически выпущенной продукции по следующим данным по трем филиалам предприятия, выпускающих однородную продукцию:
Вариант 7. По промышленному предприятию за отчетный год имеются следующие данные о выпуске продукции:
Определить процент выполнения квартального плана: 1) по выпуску каждого виа продукции; 2) в целом по выпуску всей продукции. Вариант 8. Определить процент выполнения плана по продажам условных школьных тетрадей (1 у.ш.т. – 12 листов) по каждому виду тетрадей и в целом по магазину по следующим данным:
Вариант 9. В России на начало года численность населения составила 144,2 млн. чел., в течение года: родилось 1,46 млн. чел., умерло – 2,3 млн. чел., мигрировало из других государств 2,09 млн. чел., мигрировало за границу – 1,98 млн. чел. Охарактеризовать изменение численности населения в году с помощью относительных величин. Вариант 10. Определить общий объем фактически выпущенной условной консервной продукции (1 у.к.б. = 0,33 л) по следующим данным:
Тема 2. Средние величины и показатели вариации
Методические указания по теме Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного отделения ВУЗа (лет): 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 22; 23; 23; 24; 25; 25; 25; 26; 27; 29. Для анализа распределения студентов по возрасту требуется: 1) построить интервальный ряд распределения и его график; 2) рассчитать модальный, медианный и средний возраст, установить его типичность с помощью коэффициентов вариации; 3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса. Решение. Для построения интервального ряда из дискретного используется формула Стерджесса, с помощью которой определяется оптимальное количество интервалов (n): n=1+3,322lgN, (10) где N – число величин в дискретном ряде. В нашей задаче n = 1 + 3,322 lg 25 = 1 + 3,322*1,398 = 5,64. Так как число интервалов не может быть дробным, то округлим его до ближайшего целого числа, т.е. до 6. После определения оптимального количества интервалов определяем размах интервала по формуле: h=H/n, (11) где H – размах вариации, определяемый по формуле (12). H=Хмах–Хmin, (12) где Xмax и Xmin — максимальное и минимальное значения в совокупности. В нашей задаче h = (29 – 19)/6 = 1,67. Интервальная группировка данных приведена в первом столбце таблицы 1, которая содержит также алгоритм и промежуточные расчеты.
Таблица 1. Вспомогательные расчеты для решения задачи
Мода – это наиболее часто повторяющееся значение признака. Для интервального ряда с равными интервалами величина моды определяется по формуле (13):
где ХMo – нижнее значение модального интервала; fMo – число наблюдений или объем взвешивающего признака (вес признака) в модальном интервале; fMo-1 – то же для интервала, предшествующего модальному; fMo+1 – то же для интервала, следующего за модальным; h – величина интервала изменения признака в группах. В нашей задаче чаще всего повторяется (12 раз) первый интервал возраста (до 20,67), значит, это и есть модальный интервал. Используя формулу (13), определяем точное значение модального возраста: Мо = 19 + 1,667*(12-0)/(2*12-4-0) = 20 (лет). Медиана – это такое значение признака, которое приходится на середину ранжированного ряда. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака больше медианы, другая – меньше медианы. Для интервального ряда с равными интервалами величина медианы определяется так:
где XMe – нижняя граница медианного интервала; h – его величина (размах); В нашей задаче второй интервал возраста (от 20,67 до 22,33) является медианным, так как на него приходится середина ряда распределения возраста. Используя формулу (14), определяем точное значение медианного возраста: Ме = 20,67 + 1,667*(12,5-12)/4 = 20,878 (года). Средняя величина – это обобщающий показатель совокупности, характеризующий уровень изучаемого явления или процесса. Средние величины могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном (не сгруппированном) порядке, по общей формуле (15). Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием общей формулы (16).
При этом обозначено: Xi – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят виды средних величин. Используя формулы (15) и (16) при разных показателях степени m, получаем частные формулы каждого вида (см. таблицу 2). Таблица 2. Виды степенных средних и их применение
Выбор вида формулы средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять. Показатель степени m в общей формуле средней величины оказывает существенное влияние на значение средней величины: по мере увеличения степени возрастает и средняя величина (правило мажорантности средних величин), то есть В нашей задаче, применяя формулу (18) и подставляя вместо Коэффициенты вариации рассчитываются как отношение среднего отклонения к средней величине. Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации. Среднее линейное отклонение определяется по формулам (29) и (30):
Среднее квадратическое отклонение определяется как корень квадратный из дисперсии, то есть по формуле (31):
Дисперсия определяется по формулам (32) или (33):
В нашей задаче, применяя формулу (30), определим ее числитель и внесем в расчетную таблицу. В итоге получим среднее линейное отклонение: Л = 54,937/25 = 2,198 (года). Разделив это значение на средний возраст, получим линейный коэффициент вариации: Применяя формулу (33), получим в итоге дисперсию: Д = 164,018/25 = 6,561. Извлечем из этого числа корень и получим в результате среднее квадратическое отклонение: В качестве показателей асимметрии используются: коэффициент асимметрии – нормированный момент третьего порядка (34) и коэффициент асимметрии Пирсона (35):
Если значение коэффициента асимметрии положительно, то в ряду преобладают варианты, которые больше средней (правосторонняя скошенность), если отрицательно – левосторонняя скошенность. Если коэффициент асимметрии равен 0, то вариационный ряд симметричен. В нашей задаче Для характеристики крутизны распределения используется центральный момент 4-го порядка:
Для образования безразмерной характеристики определяется нормированный момент 4-го порядка
Для приближенного определения эксцесса может быть использована формула Линдберга (38):
где В нашей задаче числитель центрального момента 4-го порядка рассчитан в последнем столбце расчетной таблицы. В итоге по формуле (37) имеем: Ex = (2780,498/25)/2,5614–3 = 111,220/43,017–3 = -0,415. Так как Ex<0, то распределение низковершинное. Это подтверждает и приблизительный расчет по формуле (38): в интервале 21,967
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|