Самостоятельные задания по теме
Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов, в результате которой получено следующее распределение клиентов по размеру вкладов:
С вероятностью 0,954 определить: 1) средний размер вклада во всем банке; 2) долю вкладчиков во всем банке с размером вклада свыше 15000 у.е.; 3) необходимую численность выборки при определении среднего размера вклада, чтобы не ошибиться более чем на 500 у.е.; 4) необходимую численность выборки при определении доли вкладчиков во всем банке с размером вклада свыше 30 000 у.е., чтобы не ошибиться более чем на 10%. Тема 4. Ряды динамики Методические указания по теме Задача 1. Смертность от болезней системы кровообращения в России за период гг. характеризуется следующим рядом динамики.
Вычислить: абсолютные, относительные, средние изменения и их темпы базисным и цепным способами. Проверить ряд на наличие в нем линейного тренда, на основе которого рассчитать интервальный прогноз на год с вероятностью 95%. Решение. Любое изменение уровней ряда динамики определяется базисным (сравнение с первым уровнем) и цепным (сравнение с предыдущим уровнем) способами. Оно может быть абсолютным (разность уровней ряда) и относительным (соотношение уровней).
Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда (47), а цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда (48). (47) (48) По знаку абсолютного изменения делается вывод о характере развития явления: при > 0 — рост, при < 0 — спад, при = 0 — стабильность. В нашей задаче эти изменения определены в 3-м и 4-м столбцах таблицы 5. Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. В нашей задаче это правило выполняется: = 124,2 и = 124,2. Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда (49), а цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда (50). (49) (50) Относительные изменения уровней — это по существу индексы динамики, критериальным значением которых служит 1. Если они больше ее, имеет место рост явления, меньше ее — спад, а при равенстве единице наблюдается стабильность явления. В нашей задаче эти изменения определены в 5-м и 6-м столбцах таблицы 5. Вычитая единицу из относительных изменений, получают темп изменения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место рост явления, при отрицательном — спад, а при нулевом темпе изменения наблюдается стабильность явления. В нашей задаче темпы изменения определены в 7-м и 9-м столбцах таблицы 5, а в 8-м и 10-м сделан вывод о характере развития изучаемого явления. Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному. В нашей задаче это правило выполняется: =1,107 и =1,107.
Таблица 5. Вспомогательные расчеты для решения задачи Обобщенной характеристикой ряда динамики является средний уровень ряда . Способ расчета зависит от того, моментный ряд или интервальный (см. рис.3):
Рис.3. Методы расчета среднего уровня ряда динамики. В нашей задаче ряд динамики интервальный, значит, применяем формулу средней арифметической простой (17): = 12070,2 / 10 = 1207,02 (тыс. чел.). То есть за период 1995-2004 в России в среднем за год от болезней системы кровообращения умирало 1207,02 тыс. чел. Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения. Базисное среднее абсолютное изменение – это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (51). Цепное среднее абсолютное изменение уровней ряда – это частное от деления суммы всех цепных абсолютных изменений наколичество изменений (52). Б = (51) Ц = (52) По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными. В нашей задаче = 124,2/9 = 13,8, то есть ежегодно в среднем смертность от болезней системы кровообращения растет на 13,8 тыс. чел. Наряду со средним абсолютным изменением рассчитывается и среднее относительное. Базисное среднее относительное изменение определяется по формуле (53), а цепное среднее относительное изменение – по формуле (54): Б= = (53) Ц= (54) Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. В нашей задаче = = 1,0114, то есть ежегодно в среднем смертность от болезней системы кровообращения растет в 1,0114 раза. Вычитанием 1 из среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашей задаче = 1,0114 – 1 = 0,0114, то есть ежегодно в среднем смертность от болезней системы кровообращения растет на 1,14%.
Проверка ряда динамики на наличие в нем тренда (тенденции развития ряда) возможна несколькими способами (метод средних, Фостера и Стюарта, Валлиса и Мура и пр.), но наиболее простым является графическая модель, где на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально. Тренд может представлять собой прямую линию, параболу, гиперболу и т.п. В итоге приходим к трендовой модели вида: , (55) где – математическая функция развития; – случайное или циклическое отклонение от функции; t – время в виде номера периода (уровня ряда). Цель такого метода – выбор теоретической зависимости в качестве одной из функций: – прямая линия; – гипербола; – парабола; – степенная; – ряд Фурье. . Определение параметров в этих функциях может вестись несколькими способами, но самые незначительные отклонения аналитических (теоретических) уровней ( – читается как «игрек, выравненный по t») от фактических () дает метод наименьших квадратов – МНК. При этом методе учитываются все эмпирические уровни и должна обеспечиваться минимальная сумма квадратов отклонений эмпирических значений уровней от теоретических уровней : . (56) В нашей задаче при выравнивании по прямой вида параметры и отыскиваются по МНК следующим образом. В формуле (55) вместо записываем его конкретное выражение . Тогда . Дальнейшее решение сводится к задаче на экстремум, т.е. к определению того, при каком значении и функция двух переменных S может достигнуть минимума. Как известно, для этого надо найти частные производные S по и , приравнять их к нулю и после элементарных преобразований решить систему двух уравнений с двумя неизвестными. В соответствии с вышеизложенным найдем частные производные: Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные – оставив в левой, получим систему нормальных уравнений:
(57) где n – количество уровней ряда; t – порядковый номер в условном обозначении периода или момента времени; y – уровни эмпирического ряда. Эта система и, соответственно, расчет параметров и упрощаются, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно –1, –2, –3 и т.д., а следующие за средним (центральным) – соответственно 1, 2, 3 и т.д. При четном числе уровней два серединных момента (периода) времени обозначают –1 и +1, а все последующие и предыдущие, соответственно, через два интервала: , , и т.д. При таком порядке отсчета времени (от середины ряда) = 0, поэтому, система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно: (58) Как видим, при такой нумерации периодов параметр представляет собой средний уровень ряда. Определим по формуле (58) параметры уравнения прямой, для чего исходные данные и все расчеты необходимых сумм представим в таблице 6. Из таблицы получаем, что = 12070,2/10 = 1207,02 и = 4195/330 = 12,7121. Отсюда искомое уравнение тренда =1207,02+12,7121t. В 6-м столбце таблицы 6 приведены трендовые уровни, рассчитанные по этому уравнению
По полученной модели для каждого периода (каждой даты) определяются теоретические уровни тренда () и оценивается надежность (адекватность) выбранной модели тренда. Оценку надежности проводят с помощью критерия Фишера, сравнивая его расчетное значение Fр с теоретическими значениями FТ (приложение 1). При этом расчетный критерий Фишера определяется по формуле: , (59) где k – число параметров (членов) выбранного уравнения тренда; ДА – аналитическая дисперсия, определяемая по формуле (61); До – остаточная дисперсия (62), определяемая как разность фактической дисперсии ДФ (60) и аналитической дисперсии: ; (60) ; (61) . (62) Сравнение расчетного и теоретического значений критерия Фишера ведется обычно при уровне значимости с учетом степеней свободы и . Уровень значимости связан с вероятностью следующей формулой . При условии Fр > FТ считается, что выбранная математическая модель ряда динамики адекватно отражает обнаруженный в нем тренд. Таблица 6. Вспомогательные расчеты для решения задачи
Проверим тренд в нашей задаче на адекватность по формуле (59), для чего в 7-м столбце таблицы 6 рассчитан числитель остаточной дисперсии, а в 8-м столбце – числитель аналитической дисперсии. В формуле (59) можно использовать их числители, так как оба они делятся на число уровней n (n сократятся): FР = 53327,348*8/(16476,25*1) = 25,893 > FТ, значит, модель адекватна и ее можно использовать для прогнозирования (FТ = 5,32 находим по приложению 1 в 1-ом столбце [ = k – 1 = 1] и 8-й строке [ = n – k = 8]).
При составлении прогнозов уровней социально-экономических явлений обычно оперируют не точечной, а интервальной оценкой, рассчитывая так называемые доверительные интервалы прогноза. Границы интервалов определяются по формуле (63): , (63) где – точечный прогноз, рассчитанный по модели тренда; – коэффициент доверия по распределению Стьюдента при уровне значимости и числе степеней свободы =n–1 (приложение 2); – ошибка аппроксимации, определяемая по формуле (64): , (64) где и – соответственно фактические и теоретические (трендовые) значения уровней ряда динамики; n – число уровней ряда; k – число параметров (членов) в уравнении тренда. Определим доверительный интервал в нашей задаче на 2005 год с уровнем значимости = (1–0,95) = 0,05. Для этого найдем ошибку аппроксимации по формуле (64): = = 45,38. Коэффициент доверия по распределению Стьюдента = 2,2622 при = 10 – 1=9. Прогноз на 2005 с вероятностью 95% осуществим по формуле (63): Y2005 =(1207,02+12,7121*11) 2,2622*45,38 или 1244,19< Y2005 <1449,51 (тыс.чел.).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|