Самостоятельные задания по теме
Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов, в результате которой получено следующее распределение клиентов по размеру вкладов:
С вероятностью 0,954 определить: 1) средний размер вклада во всем банке; 2) долю вкладчиков во всем банке с размером вклада свыше 15000 у.е.; 3) необходимую численность выборки при определении среднего размера вклада, чтобы не ошибиться более чем на 500 у.е.; 4) необходимую численность выборки при определении доли вкладчиков во всем банке с размером вклада свыше 30 000 у.е., чтобы не ошибиться более чем на 10%. Тема 4. Ряды динамики Методические указания по теме Задача 1. Смертность от болезней системы кровообращения в России за период гг. характеризуется следующим рядом динамики.
Вычислить: абсолютные, относительные, средние изменения и их темпы базисным и цепным способами. Проверить ряд на наличие в нем линейного тренда, на основе которого рассчитать интервальный прогноз на год с вероятностью 95%. Решение. Любое изменение уровней ряда динамики определяется базисным (сравнение с первым уровнем) и цепным (сравнение с предыдущим уровнем) способами. Оно может быть абсолютным (разность уровней ряда) и относительным (соотношение уровней).
Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда (47), а цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда (48).
По знаку абсолютного изменения делается вывод о характере развития явления: при В нашей задаче эти изменения определены в 3-м и 4-м столбцах таблицы 5. Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. В нашей задаче это правило выполняется: Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда (49), а цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда (50).
Относительные изменения уровней — это по существу индексы динамики, критериальным значением которых служит 1. Если они больше ее, имеет место рост явления, меньше ее — спад, а при равенстве единице наблюдается стабильность явления. В нашей задаче эти изменения определены в 5-м и 6-м столбцах таблицы 5. Вычитая единицу из относительных изменений, получают темп изменения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место рост явления, при отрицательном — спад, а при нулевом темпе изменения наблюдается стабильность явления. В нашей задаче темпы изменения определены в 7-м и 9-м столбцах таблицы 5, а в 8-м и 10-м сделан вывод о характере развития изучаемого явления. Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному. В нашей задаче это правило выполняется:
Таблица 5. Вспомогательные расчеты для решения задачи Обобщенной характеристикой ряда динамики является средний уровень ряда
Рис.3. Методы расчета среднего уровня ряда динамики. В нашей задаче ряд динамики интервальный, значит, применяем формулу средней арифметической простой (17): Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения. Базисное среднее абсолютное изменение – это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (51). Цепное среднее абсолютное изменение уровней ряда – это частное от деления суммы всех цепных абсолютных изменений наколичество изменений (52).
По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными. В нашей задаче Наряду со средним абсолютным изменением рассчитывается и среднее относительное. Базисное среднее относительное изменение определяется по формуле (53), а цепное среднее относительное изменение – по формуле (54):
Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. В нашей задаче Вычитанием 1 из среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашей задаче
Проверка ряда динамики на наличие в нем тренда (тенденции развития ряда) возможна несколькими способами (метод средних, Фостера и Стюарта, Валлиса и Мура и пр.), но наиболее простым является графическая модель, где на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально. Тренд может представлять собой прямую линию, параболу, гиперболу и т.п. В итоге приходим к трендовой модели вида:
где
. Определение параметров
В нашей задаче при выравнивании по прямой вида В соответствии с вышеизложенным найдем частные производные: Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные – оставив в левой, получим систему нормальных уравнений:
где n – количество уровней ряда; t – порядковый номер в условном обозначении периода или момента времени; y – уровни эмпирического ряда. Эта система и, соответственно, расчет параметров При таком порядке отсчета времени (от середины ряда)
Как видим, при такой нумерации периодов параметр Из таблицы получаем, что
По полученной модели для каждого периода (каждой даты) определяются теоретические уровни тренда (
где k – число параметров (членов) выбранного уравнения тренда; ДА – аналитическая дисперсия, определяемая по формуле (61); До – остаточная дисперсия (62), определяемая как разность фактической дисперсии ДФ (60) и аналитической дисперсии:
Сравнение расчетного и теоретического значений критерия Фишера ведется обычно при уровне значимости Таблица 6. Вспомогательные расчеты для решения задачи
Проверим тренд в нашей задаче на адекватность по формуле (59), для чего в 7-м столбце таблицы 6 рассчитан числитель остаточной дисперсии, а в 8-м столбце – числитель аналитической дисперсии. В формуле (59) можно использовать их числители, так как оба они делятся на число уровней n (n сократятся): FР = 53327,348*8/(16476,25*1) = 25,893 > FТ, значит, модель адекватна и ее можно использовать для прогнозирования (FТ = 5,32 находим по приложению 1 в 1-ом столбце [
При составлении прогнозов уровней социально-экономических явлений обычно оперируют не точечной, а интервальной оценкой, рассчитывая так называемые доверительные интервалы прогноза. Границы интервалов определяются по формуле (63):
где
где Определим доверительный интервал в нашей задаче на 2005 год с уровнем значимости Прогноз на 2005 с вероятностью 95% осуществим по формуле (63): Y2005 =(1207,02+12,7121*11)
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|