Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Рисунок 3. Вибрирующие единицы. Действующий начальный уровень. Действующий начальный уровень Максимальная итоговая удельная теплота (отрицательный начальный уровень) -0




Рисунок 3

Когда кривая вращения два достигает конечной точки при итоговой, положительной удельной теплоте 2, 917 R, дальнейшее уменьшение начального уровня с помощью перехода к вращению три, где доступно более высокое вращение, поднимает максимум до 2, 975 R. Если доступна вибрирующая единица 4, следует еще один аналогичный переход. Нижеприведенная таблица показывает величины удельной теплоты, соответствующие начальному и конечному уровням каждой кривой. Как указывалось раньше, единицы, применимые ко второй колонке под каждым из подзаголовков, являются калориями на грамм моль на градус Кельвина.

Вибрирующие единицы

Действующий начальный уровень

Максимальная итоговая удельная теплота (отрицательный начальный уровень)
-0, 667 R   -1, 3243 2, 3333 R 4, 6345
-0, 0833 R   -0, 1655 2, 9167 R 5, 7940
-0, 0247 R   -0, 0490 2, 9753 R 5, 9104
-0, 0104 R   -0, 0207 2, 9896 R 5, 9388

 

В конце концов, на основе отрицательного начального уровня достигается максимальная итоговая удельная теплота. Здесь происходит переход к положительному начальному уровню, и кривая продолжается до общего максимума. В результате работы механизма последовательных переходов каждое число вибрирующих единиц обладает своей характерной кривой удельной теплоты. Кривая для вращения один уже представлена на рисунке 3. Для удобства, мы будем называть ее кривой вида два. Другой тип кривых вида один, состоящих их двух, трех и четырех вибрирующих единиц, демонстрируется на рисунке 4 (на следующей странице). Как можно видеть из этих графиков, если число вибрирующих единиц увеличивается, происходит постепенное уплощение и увеличение отношения температуры к удельной теплоте. Реальная температурная шкала кривой, применимая к любому конкретному элементу или соединению, зависит от температурных характеристик вещества. Но относительная температурная шкала определяется уже рассмотренными факторами, и кривые рисунка 4 нарисованы на этой относительной основе.

Как указывается уравнением 5-8, наклон вращения двух сегментов кривой удельной теплоты составляет лишь 1/8 наклона вращения одного сегмента. Хотя второй сегмент начинается при температуре, соответствующей удельной теплоте 2 1/3 R, а не с нулевой температуры, фиксированное отношение между двумя наклонами означает, что проецирование кривой для двух единиц назад к нулевой температуре всегда пересекается с ординатой нулевой температуры в одной и той точке, невзирая на реальную шкалу кривой. Наклоны кривых для трех или четырех единиц тоже связаны с наклонами предыдущих кривых, и каждая из более высоких кривых тоже обладает фиксированной начальной точкой. Мы обнаружим, что эта характеристика очень удобна при анализе сложных кривых удельной теплоты, поскольку каждую экспериментальную кривую можно разбить на последовательность прямых линий, пересекающих нулевую ординату в фиксированных точках, числовые значения которых следующие:

 

Вибрирующие единицы

Удельная теплота при 0º K (спроецированная)

  -0, 6667 R -1, 3243  
  1, 9583 R 3, 8902  
  2, 6327 R 5, 2298  
  2, 8308 R 5, 6234  

 

Рисунок 4

Эти величины и максимальная удельная теплота, предварительно вычисленная для последовательных кривых, позволяют определить относительные температуры разных точек перехода. Например, у кривой вращения три, температуры первой и второй точек перехода пропорциональны разнице их относительной удельной теплоты. И начальный уровень 3, 8902 сегмента вращения два кривой, как и обе эти точки, лежит на этой линии. Относительные температуры любой другой пары точек, расположенных на том же отрезке прямой линии любых кривых, можно определить аналогичным образом. Таким способом были вычислены последующие относительные температуры, основываясь на температуре первого перехода, принятой за единицу.

Вибрирующие единицы

Относительная температура точки перехода

Конечная точка

  1, 000 1, 80  
  2, 558 4, 56  
  3, 086 9, 32  
  3, 391 17, 87  

 

Кривые на рисунках 3 и 4 изображают то, что можно назвать “правильными” паттернами удельной теплоты элементов. В некоторых случаях они подвергаются модификации. Например, все электроотрицательные элементы со смещениями ниже 7, изученные до сих пор, заменяют начальный уровень –0, 66 на нормальный уровень –1, 32. Другое общепринятое отклонение от правильного паттерна включает изменение температурной шкалы кривой в одной из точек перехода, обычно первой. По причинам, которые будут обсуждаться позже, изменение обычно идет по нисходящей линии. Ввиду того, что начальный уровень каждого сегмента кривой остается одним и тем же, изменение в температурной шкале выражается как увеличение наклона сегмента более высокой кривой. Реальное пересечение сегментов двух вовлеченных кривых происходит на уровне, выше обычной точки перехода.

В верхних частях кривых, где температуры приближаются к точкам плавления, имеются отклонения разной природы. Сейчас, они рассматриваться не будут, потому что связаны с переходами к жидкому состоянию. Их удобнее исследовать в связи с обсуждением свойств жидкостей.

Как упоминалось раньше, количество, с которым имеют дело эта и следующая глава, является удельной теплотой при нулевом внешнем давлении. В главе 6 вычисленные величины этого количества будут сравниваться с измеренными величинами удельной теплоты при постоянном давлении, поскольку разница между удельной теплотой при нулевом давлении и при наблюдаемых давлениях невелика, и ею можно пренебречь. Большинство традиционных теорий имеют дело с удельной теплотой при постоянном объеме, а не при постоянном давлении. Но наш анализ указывает, что фундаментальному количеству соответствует измерение при постоянном давлении.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...