Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Глава 22. Магнитные материалы




Глава 22

Магнитные материалы

 

Обсуждение статического магнетизма в главе 19 относилось к виду двумерной вибрации вращения, известной как ферромагнетизм. Это магнетизм, известный широкой общественности, магнетизм постоянных магнитов. Как указывалось в предшествующем обсуждении, ферромагнетизм присутствует лишь в относительно небольшом количестве веществ. И поскольку ранним исследователям был известен лишь один вид магнетизма, его сочли неким особым видом феноменов ограниченного масштаба. Бесспорно, всеобщая вера оказала значимое влияние на мышление, что привело к выводу, что магнетизм – это побочный продукт электричества. Однако недавно обнаружили существование другого вида магнетизма, намного более слабого, но присущего всем видам материи.

В целях понимания природы второго вида статического магнетизма понадобиться вспомнить, что базовое вращение всех материальных атомов двумерно. Из ранее развитых принципов, управляющих комбинацией движений, следует, что двумерную вибрацию (заряд) можно применить и к двумерному вращению. Однако в отличие от ферромагнитного заряда, являющегося независимым движением основного тела атома, заряд в базовом вращении атома подвергается электрическому вращению атома в третьем скалярном измерении. Это не меняет вибрационного характера заряда, но распределяет магнитное вращение (и силу) на три измерения и уменьшает его действующую величину до гравитационного уровня. Чтобы отличить этот вид заряда от ферромагнитного заряда, мы будем назвать его внутренним магнитным зарядом.

Как мы видели, числовой коэффициент, относящийся к величинам, отличающимся одним скалярным измерением, в терминах единиц сгс составляет 3 x 1010. Соответствующий коэффициент, применимый к взаимодействию между ферромагнитным зарядом и внутренним магнитным зарядом, является квадратным корнем произведения 1 и 3 x 1010, то есть 1, 73 x 105. Таким образом, внутренние магнитные влияния слабее, чем влияния ферромагнетизма на 105.

Скалярное направление внутреннего магнитного заряда, как и у всех уже рассмотренных электрических и магнитных зарядов, - направление наружу. В материальном секторе вселенной все магнитное (двумерное) вращение положительное (итоговое смещение во времени). Но движение в третьем скалярном измерении, электрическом измерении, положительное у элементов Деления I и II и отрицательное у элементов Деления III и IV. Как объяснялось в главе 19, все положительные магнитные вращения материального сектора обладают полярностью иного вида, чем полярность, связанная с направленным распределением магнитного вращения. Если атом электроположительного элемента рассматривается из данной точки в пространстве, например, сверху, то наблюдается, что он обладает конкретным магнитным направлением вращения по часовой стрелке или против часовой стрелки. Реальная корреляция севера и юга еще не установлена, но для нынешних целей мы можем назвать конец атома, соответствующий вращению по часовой стрелке, северным полюсом. Это общее соотношение, применимое ко всем электроположительным атомам. Благодаря переворотам на единичных уровнях северный полюс электроотрицательного атома соответствует вращению против часовой стрелки; то есть, северный полюс занимает положение, соответствующее тому, которое занимает южный полюс электроположительного атома.

Если электроположительные элементы подвергаются действию поля магнита, ориентация полюсов одинакова и у атомов и у магнита (одинаково положительная). Поэтому атомы этих элементов стремятся ориентироваться с магнитной осью, параллельной магнитному полю, и двигаться к сильному концу поля; то есть, они притягиваются постоянными магнитами. Такие вещества называются парамагнитными. Электроотрицательные элементы, обладающие обратной полярностью, ориентируются с полюсами своих атомов противоположно полюсам магнита. Это сводит одноименные полюса, вызывая отталкивание. Поэтому такие атомы стремятся ориентироваться перпендикулярно к магнитному полю и движутся к слабой части поля. Вещества такого вида называются диамагнитными.

В современной теории магнетизма диамагнетизм рассматривается как универсальное свойство материи, происхождение которого необъяснимо. “Все материалы являются диамагнитными”, - говорится в одном из учебников. 98 На этом основании парамагнетизм или ферромагнетизм, там где они существуют, просто вытесняют базовый диамагнетизм. Мы находим, что каждое вещество является либо парамагнитным, либо диамагнитным, в зависимости от скалярного направления вращения в электрическом измерении. Ферромагнитные вещества являются парамагнитными с дополнительной двумерной вибрацией вращения уже описанного вида.

Все элементы электроположительных Делений I и II, кроме бериллия и бора, являются парамагнитными. Как и в случае других, ранее обсужденных свойств, положительное предпочтение переносится на некоторые пограничные элементы Деления Ш. Все другие элементы электроотрицательных Делений III и IV, кроме кислорода, являются диамагнитными.

Необычное поведение некоторых элементов Группы 2А – результат маленького размера 8-членной группы, что, в некоторых примерах, позволяет составляющим элементам функционировать как члены обратного деления группы. Например, обычно бор является третьим членом положительного деления Группы 2А, но альтернативно он может действовать как пятый член отрицательного деления этой группы. Бор и бериллий - положительные элементы, самые близкие к отрицательному делению этой группы. Поэтому они наиболее подвержены влияниям, стремящимся создать переворот полярности. Почему кислород является элементом отрицательного деления, в котором происходит переворот полярности, до сих пор неизвестно.

Как говорилось в томе 1, все химические соединения представляют собой комбинации электроположительных и электроотрицательных компонентов. Присутствие любого значительного количества движения во времени (пространственного смещения) в молекулярной структуре препятствует установлению положительной магнитной ориентации. Поэтому все соединения, кроме ферромагнитных или сильно отягощенных парамагнитными элементами, диамагнитные. Такое подавляющее предпочтение диамагнетизма в соединениях, по-видимому, и привело к ныне признанной гипотезе универсального диамагнетизма.

Интенсивность магнитного влияния в магнитном материале измеряется в терминах намагничивания, символ М, определенных в главе 20. Намагничивание и напряженность приложенного поля складываются. Поэтому обе эти величины обладают размерностями напряженности магнитного поля, t2/s4, но, по историческим причинам напряженность поля обычно определяется вектором Н, обладающим размерностями 1/t. Поскольку намагничивание должно обладать теми же размерностями, что и напряженность поля, оно тоже выражается в терминах единицы с размерностями 1/t. Как мы видели в главе 20, реальными физическими величинами являются µM и µH, а не М и Н, но проницаемость µ, входящая в определения, является “проницаемостью свободного пространства, µ0, равной единице. Поэтому ошибка в размерностях не влияет на числовые результаты вычислений.

Исходя из вышесказанного, итоговая общая напряженность магнитного поля, В, является суммой µ0M и µ0H. Для некоторых целей, удобнее выражать эту величину только в терминах Н. Это достигается введением магнитной восприимчивости , определеннойотношением  = M/H. На этом основании B =
(1+ 0H.

Как указывалось раньше, внутренние магнитные влияния относительно слабые. Поэтому восприимчивости парамагнитных и диамагнитных материалов низкие. Восприимчивости диамагнитных веществ не зависят и от температуры. На ранних стадиях теоретического исследования предпринимались изучения коэффициентов, определяющих величину внутренней магнитной восприимчивости, результаты которых сообщались; и в первое издание данной книги включены вычисления диамагнитной восприимчивости ряда простых органических соединений. Результаты не пересматривались и в свете более сложного понимания природы магнитных феноменов, обретенного за последние несколько десятилетий. Очевидных несогласованностей не замечено, поэтому сейчас будет уместно рассмотреть новые открытия.

Как и следовало ожидать, поскольку внутренний магнитный заряд – это модификация магнитного компонента вращательного движения атома, магнитная восприимчивость обратна действующему смещению магнитного вращения. Конечно, у большинства элементов имеются две возможные величины смещения, но используемая величина часто определяется окружением; то есть, связь с элементами низкого смещения обычно означает преобладание более низкой величины, и наоборот. Например, углерод принимает вторичное смещение 1 в связи с водородом, но оно меняется на первичное смещение 2 в связи с элементами более высоких групп.

Еще один источник изменчивости вводится тем фактом, что восприимчивость, как и большинство других физических свойств, обладает начальным уровнем, и на него тоже влияют факторы окружения. На нынешней стадии развития мы не можем оценивать эти факторы из чисто теоретических допущений, но они регулярным образом меняются в разных семьях соединений. Поэтому с помощью ряда соотношений, мы можем установить то, что можно называть полу-теоретическими величинами диамагнитной восприимчивости множества относительно простых органических соединений.

Экспериментальные величины восприимчивости данных соединений значительно меняются. Однако при первичном исследовании обнаружили, что за исключением определенной разницы в начальных уровнях, диамагнитная восприимчивость обладает той же величиной, что и константа, которую мы назвали рефракционной константой, определяющей индекс рефракции. В данном томе не обсуждаются свойства излучения, но измерения индекса рефракции намного точнее, чем измерения магнитной восприимчивости. Поэтому в качестве основы для вычисления проницаемостей желательно воспользоваться рефракционной константой. Кроме того, потребуется объяснение способа выведения данной константы.

Как и внутренняя восприимчивость, рефракционная константа обратна действующему смещению магнитного вращения - общему смещению минус начальный уровень. Как и в случае с восприимчивостью, определение данной константы усложняется изменчивостью начальных уровней, особенно уровней самых обычных элементов в органических соединениях – углерода и водорода. В целях удобства вычисления и выделения ряда соотношений величина рефракционной константы сначала вычисляется на основании того, что мы можем рассматривать как “обычные” величины. Затем для каждого компонента определяется выведение константы из обычной величины.

Таблица 33 демонстрирует выведение коэффициентов рефракции для трех репрезентативных семей органических соединений. Например, у кислот обычное смещение вращения атомов кислорода и атома углерода в группе СО равно 2-м, в то время как обычное смещение вращения атомов водорода и оставшихся атомов углерода равно 1. Во всех случаях обычный начальный уровень равен 2/9. Обычные коэффициенты рефракции индивидуальных единиц вращающейся массы составляют 0, 778 для атомов со смещением 1, и половину этой величины или 0, 389 для атомов со смещением 2. Все кислоты, начиная с уксусной (C2) и кончая энантовой (C7) включительно, обладают обычными начальными уровнями (без отклонений), и различия в индивидуальных коэффициентах рефракции возникают целиком за счет более высокой пропорции 0, 778 единиц, поскольку размер молекул увеличивается. Однако обычный начальный уровень соответствующих углеводородов составляет лишь 1/9, и когда молекулярная цепь становится достаточно длинной, чтобы избавить некоторые углеводородные группы на положительном конце молекулы от влияния кислотного радикала на отрицательном конце, группы возвращаются к обычным начальным уровням как углеводороды, начиная с последней группы CH3 и двигаясь вовнутрь. У каприловой кислоты (C8) три атома водорода в последней группе совершили изменение, то же самое они делают в примыкающей группе CH2 в пеларгоновой кислоте (C9). И когда длина молекулы увеличивается еще больше, водород в дополнительных группах CH2 продолжает приспосабливаться.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...