Главная | Обратная связь
МегаЛекции

Обзор пакетов узкого назначения

Обзор пакетов узкого назначения

Мы уже не раз обращали внимание читателя на выборочный характер описания системы Maple 7 в данной книге. Хотя она и является одной из самых полных книг по данной системе, книга не претендует на роль детального справочника по Maple 7: Более того, такого справочника в виде книги нет и, вероятно, учитывая быстрые темпы модернизации программы, так и не будет. Для подобного описания Maple пришлось бы подготовить многотомное издание, охватывающее практически все области математики.

Учитывая это, мы вынуждены отказаться от попытки описать ряд пакетов специального назначения. Такими пакетами интересуются серьезные специалисты в области математики и им (не без труда, разумеется) под силу разобраться с назначением функций таких пакетов и примерами их применения, приведенными в справочной системе Maple 7. В связи с выше сказаннным, мы ограничимся перечислением оставшихся неизученными пакетов.

Пакет функций теории чисел numtheory

Пакет функций теории чисел numtheory

В этом обширном пакете собрано 46 функций, относящихся к теории чисел:

> with(numtheory);

Warning, the protected rame order has been redefined and unprotected

[GIgcd, bigomega, cfrac, cfracpol, cyclotomic, divisors ;factorEQ,factorset,fermat, imagunit, index, integral_basis, invcfrac, invphi, issqrfree,jacobi, kronecker, Я,legendre, mcombine, mersenne, minkowski, mipolys, mlog, mobius, mroot, msqrt, nearestp, nthconver, nthdenom, nthnumer, nthpow, order,pdexpand, ф,n,pprimroot,primroot, quadres, rootsunity, safeprime, o,sq2factor, sum2sqr, т,thue ]

В новой реализации Maple 7 число функций было уменьшено. Большинство функций этого пакета достаточно просты и заинтересовавшийся читатель вполне в состоянии провести их тестирование самостоятельно.

Пакет для работы с р-адическими числами padic

Пакет для работы с р-адическими числами padic

Этот весьма специфический пакет содержит следующие функции для работы с р-адическими числами:

> with(padic);

[arccoshp, arccosp,arccothp, arccotp, arccschp, arccscp, arcsechp, arcsecp, arcsinhp, arcsinp, arctanhp, arctanp, coshp, cosp, cothp, cotp, cschp, cscp, evalp, expansion, expp, Icoeffp, logp, orderp, ordp, ratvaluep, rootp, sechp, seep, sinhp,sinp, sqrtp, tanhp,tanp, valuep]

В Maple 7 число функций этого пакета увеличено почти в четыре раза. Однако ввиду специфичности данных функций их изучение мы оставляем за читателем для самостоятельной работы.

Пакет для работы с гауссовыми целыми числами Gausslnt

Пакет для работы с гауссовыми целыми числами Gausslnt

Гауссово целое число — это число вида а + I*b, где а и b — любые целые рациональные числа. Таким образом, они образуют решетку всех точек с целыми координатами на плоскости комплексных чисел. Пакет Gausslnt содержит достаточно представительный набор функций для работы с этими числами:

> with(GaussInt):

Warning, the name GIgcd has been redefined

[GIbasis, Glchrem, GIdivisor, GIfacpoly, GIfacset, GIfactor, GIfactors, GIgcd, GIgcdex, Glhermite, Glissqr, Gllcm, GImcmbine, GInearest, GInodiv, GInorm, Glnormal, Glorder, GIphi, GIprime, Glquadres, Glquo, GIrem, GIroots, GIsieve, GIsmith ,GIsqrfree, GIsqrt, Glunitnormal ]

Нетрудно заметить, что в этот набор входят уже известные числовые функции, к именам которых добавлены буквы 61. Например, функция GIfactor(c) раскладывает гауссово число (в том числе комплексное) на простые множители, GIgcd(cl, с2) находит наибольший общий делитель гауссовых чисел cl и с2 и т. д. Функции этого пакета достаточно просты, так что ограничимся приведенными примерами. Гауссовы целые числа в большинстве научно-технических расчетов встречаются крайне редко. Так что этот пакет рассчитан на специалистов-математиков, работающих в области теории чисел.

Пакет алгебры линейных операторов Ore_algebra

Пакет алгебры линейных операторов Ore_algebra

Пакет Ore_algebra содержит набор функций алгебры линейных операторов, состав которого виден после обращения к пакету:

> with(0re_algebra);

[OrejoJDESol, Ore_to_RESol, Orejojdiff, Ore_to_shift, annihilators, applyopr, diff_algebra, poly, algebra, qshiji_algebra, rand_skew_poly, shift_algebra, skew_algebra, skewjslim, skewjgcdex, skewjydiv, skewjxrwer, skew_prem, skew_product]

Этот пакет поддерживает решение задач в области алгебры линейных операторов.

Инструментальный пакет для линейных рекуррентных уравнений LREtools

Инструментальный пакет для линейных рекуррентных уравнений LREtools

Этот пакет полезен математикам, часто использующим рекуррентные отношения и формулы. Он дополняет функцию rsolve основной библиотеки и содержит следующие функции: :

> with(LREtools):

[REcontent, REcreate, REplot, REprimpart, REreduceorder, REtoDE,REtodelta, REtoproc, autodispersion, constcoeffsol,

5,dispersion, divconq, firstlin, hypergeomsols, polysols,ratpolysols, riccati, shift]

С назначением функций этого пакета можно познакомиться по справочной системе Maple 7.

Пакет функций дифференциальных форм difforms

Пакет функций дифференциальных форм difforms

В пакете дифференциальных форм содержится следующий ряд функций:

> with(difforms);

[&^, d, defform,formpart,parity, scalarpart, simpform, wdegree]

Демонстрационные материалы по применению этого пакета входят в поставку Maple 7.

Пакет для работы с рациональными производящими функциями genfunc

Пакет для работы с рациональными производящими функциями genfunc

В пакете genfunc, предназначенном для работы с производящими функциями, содержатся следующие средства:

> with(genfunc);

[rgf_charseq, rgf_encode, rgf_expqnd, rgfjindrecur, rgfjiybrid, rgfjiorm, rgf_pfrac, rgf_relate, rgf_sequence, rgf_simp, rgfjerm,termscale]

Эти функции представляют специальный интерес для пользователей, работающих в области теории чисел и рациональных функций.

Пакет операций для работы с конечными группами group

Пакет операций для работы с конечными группами group

Этот пакет содержит довольно представительный набор функций для работы с конечными группами:

> with(group);

[DerivedS, LCS, NormalClosure, RandElement, SnConjugates, Sylow,areconjugate, center,

centralizer, core, cosels, cosrep, derived, elements,groiipmember,grouporder, inter, invperm, isabelian, isnormal,issubgroup, mulperms, normalizer, orbit, parity,

permrep, pres, transgroup ]

Функции этого пакета представляют интерес для математиков, работающих в области конечных групп. Но вряд ли они будут полезны большинству пользователей. Тем не менее, наличие таких функций говорит о полноте функциональных возможностей системы Maple 7.





©2015- 2017 megalektsii.ru Права всех материалов защищены законодательством РФ.