Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основы биохимии пищеварения




Пищеварение - совокупность процессов, обеспечивающих механическое измельчение и химическое расщепление пищевых веществ на компоненты, лишенные видовой специфичности, пригодные к всасыванию из пищеварительного тракта в кровь и лимфу, участию в обмене веществ и энергии. Поступающая в организм пища всесторонне обрабатывается под действием различных пищеварительных ферментов, синтезируемых специализированными клетками. Расщепление происходит с присоединением молекул воды. Образующиеся при расщеплении белков, жиров и углеводов аминокислоты, жирные кислоты, глицерин и моносахариды всасываются в органы и ткани, а из них образуются новые сложные органические вещества. Известны три ос-новных вида пищеварения: внутриклеточное, внеклеточное (дистант-ное) и мембранное [5, 10].

Пищеварительная система осуществляет начальный этап обмена веществ между внешней и внутренней средами организма.

В состав пищеварительной системы входит пищеварительный канал, поджелудочная железа и печень.

Пищеварение начинается в ротовой полости: механическое измельчение путем жевания и первоначальная химическая обработка под действием слюны, которая смачивает пищевую массу, обеспечивает формирование пищевого комка. В основном углеводы перевариваются амилазой слюны. Затем поступают в пищевод и желудок. Пища накапливается в желудке, перемешивается и пропитывается кислым желудочным соком, обладающим ферментативной активностью, антибактериальными свойствами и способностью денатурировать клеточные структуры. Основная функция желудка - депонирование пищи, ее механическая и химическая обработка. Пищевая масса постепенно направляется в кишечник, в желудке пища находится в зависимости от ее количества и состава от 4 до 10 ч (у человека в среднем 3,5-4,0 ч).

В желудке происходит гидролиз пищевых белков пепсином (оптимум рН 1,5-2,5) и гастриксином (оптимум рН 3,0). В полости желудка из неактивного пепсиногена под влиянием соляной кислоты образуется активный пепсин. Соляная кислота облегчает гидролиз белков благодаря денатурирующему действию, вызывает их набухание, что увеличивает контакт с ферментами. Под влиянием ферментов парапепсинов, гастриксинов, желатиназы, катепсинов желудочного сока из белков образуются пептиды различной молекулярной массы. Происходит высвобождение веществ, содержащихся в продуктах в связанном с белками виде.

Соляная кислота оказывает бактерицидный эффект, способствует усвоению железа, стимулирует деятельность нижерасположенных отделов пищеварительного тракта, секрецию некоторых гормонов его стенками. Роль соляной кислоты многообразна, поэтому нарушение ее секреции неблагоприятно отражается на ряде важных процессов в организме.

Соляная кислота вызывает денатурацию амилазы, находящейся в небольшом количестве в желудке. Из желудка пищевая масса порциями поступает в кишечник, где наиболее интенсивно происходят процессы ферментативного гидролиза и переход к всасыванию. Фаза пищеварения в тонком кишечнике осуществляется в среде, близкой к нейтральной или слабощелочной. Пептиды, образовавшиеся под действием пепсина в желудке и нерасщепленные белки гидролизуются протеазами поджелудочного сока: трипсином, химотрипсином, карбоксипептидазой и эластазой. Образуются низкомолекулярные пептиды и аминокислоты.

В гидролизе жиров существенную роль играет желчь, выделяемая печенью. Желчь активирует липазу поджелудочного сока и эмульгирует жиры. В полости тонкой кишки этот фермент поэтапно отщепляет жирные кислоты и приводит к образованию ди- и моноглицеридов и незначительного количества свободных жирных кислот и глицерина. Образующиеся продукты гидролиза соприкасаются с поверхностью кишки, где происходит дальнейшая их обработка путем мембранного пищеварения. В мембранном пищеварении участвуют ферменты поджелудочного сока: a -амилаза, липаза, трипсин, химотрипсин, эластаза и другие ферменты, а также собственно кишечные ферменты: g-амилаза, олиго- и дисахаридазы; различные тетра-, три- и дипептидазы, аминопептидазы, щелочная фосфатаза и ее изоэнзимы; моноглицеридлипаза.

Поступающие с пищей углеводы под действием гликолитических ферментов желудочно-кишечного тракта расщепляются до моносахаридов, которые всасываются в кровь.

Основным моносахаридом является глюкоза; она постоянно извлекается из русла крови клетками, в которых происходит ее окисление в аэробных условиях до конечных продуктов (СО2 и Н20) с аккумуляцией в макроэргических соединениях значительной части заключенной в ней химической энергии. При недостаточном содержании кислорода в тканях (анаэробные условия) глюкоза окисляется не полностью.

Отличительной чертой катаболизма углеводов является их способность окисляться двумя путями - гексозодифосфатным и гексозомонофосфатным (пентозофосфатным). Последний является вспомогательным путем окисления углеводов.

Гексозодифосфатное окисление углеводов может протекать в аэробных и анаэробных условиях, а пентозофосфатное - в аэробных условиях [5, 15, 16].

Процессы аэробного и анаэробного превращения углеводов до стадии образования пировиноградной кислоты одни и те же [15].

Дальнейшее превращение этой кислоты зависит от обеспечения тканей кислородом. В анаэробных условиях дыхательная цепь ферментов в этом случае не используется и АТФ не образуется. Конечным продуктом анаэробного распада глюкозы является молочная кислота.

 

СН3 СН3

½ НАДН2, дегидрогеназа ½

С = О ¾¾¾¾¾-¾¾¾® СНОН

½ ¾¾¾¾ ¾¾¾¾ ½

СООН СООН

 

пировиноградная молочная

кислота кислота

 

 

Состояние недостаточного обеспечения организма кислородом нередко встречается в нормальной жизнедеятельности человека. Например, при физическом перенапряжении, патологических изменениях организма.

Однако анаэробное состояние у высших организмов продолжаться долго не может, снабжение тканей кислородом восстанавливается, и молочная кислота переходит в пировиноградную. Молочная кислота является своеобразным метаболическим тупиком, выход из которого сводится к образованию пировиноградной кислоты, затем окисляющейся с участием ряда ферментов и коферментов (пируват-дегидразный комплекс).

В окислении пировиноградной кислоты участвует специальная дегидрогеназа, отщепляющая атомы водорода и передающая их затем в цепь дыхательных ферментов с образованием АТФ. При анаэробном окислении глюкозы образуется 14 молекул АТФ.

Свойственный только углеводам процесс распада заканчивается образованием ацетил-КоА. Дальнейший распад ацетил-КоА одинаков для белков, липидов и углеводов и осуществляется в цикле трикарбоновых кислот (цикле Кребса или цикле лимонной кислоты) [15].

Цикл Кребса является центральным звеном в цепи катаболических реакций организма и представляет собой общий конечный путь окислительного распада всех основных пищевых веществ.

Белки, жиры и углеводы после прохождения специфических, свойственных только каждому из этих пищевых веществ превращений образуют один и тот же метаболит - активную форму уксусной кислоты (ацетил-КоА), в результате окислительного распада которой образуются диоксид углерода и вода. Кроме того, при аэробном окислении глюкозы гексозодифосфатным путем может образовываться 38, а гексозомонофосфатным - 36 молекул АТФ.

Следовательно, энергетически оба пути окисления углеводов существенно не отличаются. Следует отметить, что распад белков, жиров и углеводов полностью заканчивается в тонком кишечнике; в толстом кишечнике этот процесс не происходит.

При неправильном питании возможно нарушение обмена белков, углеводов и жиров в организме, что подробно изложено в специальной литературе [13, 14, 17, 18].

При организации правильного питания человека важное значение имеет сохранение нативных свойств пищевых продуктов в процессе подготовки, переработки, производства и хранения пищевого сырья.

Рассмотрим, какие же физико-химические и биохимические изменения основных пищевых веществ происходят на различных стадиях технологической обработки пищевого сырья растительного и животного происхождения.

3. ИЗМЕНЕНИЕ ОСНОВНЫХ КОМПОНЕНТОВ
ХИМИЧЕСКОГО СОСТАВА ПИЩЕВЫХ ПРОДУКТОВ
ПРИ ТЕХНОЛОГИЧЕСКОЙ ПЕРЕРАБОТКЕ СЫРЬЯ

Белки

В процессе технологической обработки пищевых продуктов существенным изменениям подвергаются белки, влияющие на органолептические свойства, биологическую ценность, структурно-механические и другие показатели качества.

Глубина физико-химических изменений белков зависит от вида продукта, характера внешних воздествий, концентрации белков. К основным изменениям белков пищевых продуктов при различных видах технологической обработки относятся: гидратация, денатурация и деструкция.

Гидратация белков. Способность нативных белков сорбировать полярные молекулы воды за счет свободных и связанных полярных групп белковых молекул называется гидратацией.

Гидратация связана с двумя видами адсорбции: ионной и молекулярной. Адсорбирование воды ионизированными свободными полярными группами (аминогруппы диаминокислот, карбоксильные группы дикарбоновых кислот) белка называется ионной адсорбцией.

Адсорбирование воды связанными полярными группами (пептидные группы главных полипептидных цепей, гидроксильные и сульфгидрильные группы) называется молекулярной адсорбцией.

Величина молекулярной адсорбции воды постоянная для каждого вида белка, величина ионной адсорбции изменяется в зависимости от реакции среды.

В изоэлектрической точке, когда степень диссоциации молекул белка минимальна и заряд белковой молекулы близок к нулю, способность белка связывать воду наименьшая. При сдвиге рН среды в кислую или щелочную сторону от изоэлектрической точки усиливается диссоциация основных или кислотных групп белка, увеличивается заряд белковых молекул и усиливается гидратация белка.

В технологических процессах эти свойства белков используют для увеличения их водосвязывающей способности.

Адсорбированная вода удерживается белками вследствие образования между их молекулами и водой водородных связей. Водородные связи относятся к слабым, однако это компенсируется значительным количеством связей. Так, каждая молекула воды способна образовывать четыре водородные связи, которые распределяются между полярными группами белка и молекулами воды. В результате адсорбированная вода в белке оказывается довольно прочно связанной. Она не отделяется от белка самопроизвольно и не может служить растворителем для других веществ.

В растворах небольшой концентрации молекулы белка полностью гидратированы, так как содержится избыточное количество воды. В концентрированных растворах белков при добавлении воды происходит их дополнительная гидратация.

Гидратация белков имеет большое практическое значение при производстве студней и различных полуфабрикатов. (Например, рубленых котлет, бифштексов, фарша для пельменей, теста, омлетов и т.п.). При добавлении воды к измельченным животным или растительным продуктам, раствора поваренной соли и других веществ в процессе перемешивания компонентов гидратация белков сопровождается протекающими одновременно процессами растворения и набухания. Гидратация повышает липкость пищевой массы, в результате чего она хорошо формуется в готовые изделия.

От степени гидратации белков в значительной мере зависит такой важный показатель качества готовых продуктов, как сочность. При оценке роли гидратационных процессов необходимо иметь в виду, что в пищевых продуктах наряду с адсорбционной водой, прочно связанной белками, содержится осмотически и капиллярно-связанная вода, которая также влияет на качество продукции.

Денатурация белков - это нарушение нативной пространственной структуры белковой молекулы под влиянием различных внешних воздействий, сопровождающееся изменением их физико-химических и биологических свойств. При этом нарушаются вторичная и третичная структуры белковой молекулы, а первичная, как правило, сохраняется.

Денатурация белков происходит при нагревании и замораживании пищевых продуктов под действием различных излучений, кислот, щелочей, резких механических воздействий и других факторов.

При денатурации белков происходят следующие основные изменения [15, 19]:

- резко снижается растворимость белков;

- теряется биологическая активность, способность к гидратации и видовая специфичность;

- улучшается атакуемость протеолитическими ферментами;

- повышается реакционная способность белков;

- происходит агрегирование белковых молекул;

- заряд белковой молекулы равен нулю.

Потеря белками биологической активности в результате тепловой денатурации приводит к инактивации ферментов и отмиранию микроорганизмов.

В результате потери белками видовой специфичности пищевая ценность продукта не снижается.

Рассмотрим наиболее распространенную тепловую денатурацию белковых молекул, сопровождаемую разрушением слабых поперечных связей между полипептидными цепями и ослаблением гидрофобных и других взаимодействий между белковыми цепями. В результате этого изменяется конформация полипептидных цепей в белковой молекуле. Например, фибриллярные белки изменяют свою эластичность, у глобулярных белков развертываются белковые глобулы с последующим свертыванием по новому типу. Прочные (ковалентные) связи белковой молекулы при этом не нарушаются. Глобулярные белки изменяют растворимость, вязкость, осмотические свойства и электрофоретическую подвижность.

Каждый белок имеет определенную температуру денатурации t. Для белков рыбы t = 30°С, яичного белка t = 55...50° С, мяса t = 55...60°С и т.п.

При значениях рН среды, близких к изоэлектрической точке белка, денатурация происходит при более низкой температуре и сопровождается максимальной дегидратацией белка. Смещение рН среды способствует повышению термостабильности белков.

Направленное изменение рН среды широко используется в технологии для улучшения качества блюд. Так, при тушении мяса, рыбы, мариновании, перед жаркой добавляют кислоту, вино или другие кислые приправы для создания кислой среды со значениями рН ниже изоэлектрической точки белков продукта. В этих условиях дегидратация белков в продуктах уменьшается и готовое блюдо получается более сочным.

Температура денатурации белков повышается в присутствии других, более термостабильных белков и некоторых веществ небелковой природы, например, сахарозы.

Денатурация некоторых белков может происходить без видимых изменений белкового раствора (например, у казеина молока). Пищевые продукты, доведенные тепловой обработкой до готовности, могут содержать некоторое количество нативных, неденатурированных белков, в том числе некоторых ферментов.

Денатурированные белки способны к взаимодействию между собой. При агрегировании за счет межмолекулярных связей между денатурированными молекулами белка образуются как прочные, например, дисульфидные связи, так и слабые, например, водородные.

При агрегировании образуются более крупные частицы. Например, при кипячении молока выпадают в осадок хлопья денатурированного лактоальбумина, образуются хлопья и пена белков на поверхности мясных и рыбных бульонов.

При денатурации белков в более концентрированных белковых растворах в результате их агрегирования образуется студень, удерживающий всю содержащуюся в системе воду.

Основные денатурационные изменения мышечных белков завершаются при достижении 65°С, когда денатурирует более 90% общего количества белков. При t = 70°С начинается денатурация миоглобина и гемоглобина, сопровождающаяся ослаблением связи между глобином и гемоглобином, который затем отщепляется и, окисляясь, меняет окраску, вследствие чего цвет мяса становится буровато-серым.

При нагревании мяса существенные денатурационные изменения происходят с белками соединительной ткани. Нагревание коллагена во влажной среде до t = 58...62°С вызывает его "сваривание", при котором ослабевает и разрывается часть водородных связей, удерживающих полипептидные цепи в трехмерной структуре. Полипептидные цепи при этом изгибаются и скручиваются, между ними возникают новые водородные связи, имеющие случайный характер. В итоге коллагеновые волокна укорачиваются и утолщаются.

Коллаген, подвергнутый тепловой денатурации, становится более эластичным и влагоемким, его прочность значительно уменьшается. Реакционная способность коллагена также возрастает, и он становится более доступным действию пепсина и трипсина, что повышает его перевариваемость. Все эти изменения тем больше, чем выше температура и длительнее нагрев.

Деструкция белков. При нагревании пищевых продуктов до 100°С происходит разрушение макромолекул денатурированных белков. На первом этапе изменений от белковых молекул могут отщепляться такие летучие продукты, как аммиак, сероводород, диоксид углерода и другие соединения. Накапливаясь в продукте и окружающей среде эти вещества участвуют в образовании вкуса и аромата готовой пищи.

При дальнейшем воздействии температуры происходит деполимеризация белковой молекулы с образованием водорастворимых азотистых веществ. Например, при продолжении нагрева сваренного коллагена происходит его дезагрегация, связанная с разрывом водородных связей и приводящая к образованию полидисперсного продукта глютина.

Этот процесс называется пептизацией. Глютин при 40°С и выше неограниченно растворяется в воде, а при охлаждении его растворы образуют студни. Глютин легко расщепляется протеазами и, следовательно, легко переваривается.

При нагревании одновременно с пептизацией происходит гидролиз глютина с образованием конечных продуктов, называемых желатозами.

Продукт гидротермической дезагрегации коллагена, способный образовывать прочные, не плавящиеся при t = 23...27°С студни, называется желатином.

При температуре выше 100°С наблюдается дальнейший гидролиз мышечных белков до полипептидов, которые, в свою очередь, гидролизуются до аминокислот и других низкомолекулярных азотистых соединений. Степень гидролиза белков тем выше, чем выше температура и длительнее нагрев. Однако с повышением температуры и увеличением длительности нагрева скорость распада полипептидов возрастает более интенсивно, чем скорость распада белков до полипептидов. Чрезмерный распад коллагена при длительном нагревании свыше 100°С приводит к “разволакиванию” тканей, а глубокий гидролиз глютина - к образованию низкомолекулярных соединений, что уменьшает способность бульона к студнеобразованию. Длительный нагрев при температуре более 100°С вызывает также некоторое ухудшение перевариваемости белков мяса.

Очень продолжительное нагревание при высоких температурах (180-300°С) обусловливает деструкцию аминокислот и образование полиаминокислотных комплексов. Нагрев вызывает существенные изменения экстрактивных веществ. При варке мяса глютамин превращается в глютаминовую кислоту, а инозиновая кислота распадается с образованием гипоксантина. Эти процессы играют решающую роль в формировании вкуса и аромата вареного мяса. Большое значение в формировании аромата, вкуса и цвета продуктов имеет реакция взаимодействия между аминогруппами аминокислот, аминов, полипептидов или белков и гликозидными гидроксильными группами сахаров (реакция Майяра).

Деструкция белков наблюдается при производстве некоторых видов теста. При этом разрушение внутримолекулярных связей в белках происходит при участии протеолитических ферментов, содержащихся в муке и вырабатываемых дрожжевыми клетками.

 

Липиды

Липиды (от греческого "липос" - жиры) - это обширная группа нерастворимых в воде органических веществ, которые содержатся в продуктах животного и растительного происхождения и могут быть экстрагированы из них неполярными растворителями, такими, как хлороформ, эфир или бензол.

К липидам относятся нейтральные жиры (глицериды, ацилглицерины), фосфоглицериды (фосфолипиды), сфинголипиды и гликолипиды, воска, терпены, стерины, эфирные масла.

Общебиологическая роль липидов заключается в том, что они являются структурными компонентами клеточных мембран, представляют собой самый концентрированный из всех пищевых веществ источник энергии и выполняют ряд защитных функций. В состав клеточных мембран входят фосфоглицериды (фосфолипиды), содержащие в глицериновом эфире одну фосфорную и две жирные кислоты (одна насыщенная, вторая ненасыщенная). В состав мембран растительных и животных клеток входят сфинголипиды, содержащие одну молекулу жирной кислоты, одну молекулу ненасыщенного аминоспирта сфингозина или его насыщенного аналога дигидросфингозина, одну молекулу фосфорной кислоты и одну молекулу спирта, но не глицерина.

В продуктах животного происхождения содержится, как правило, больше липидов, чем в растительных, и представлены они в основном нейтральными жирами. Основной структурной единицей главных классов и подклассов липидов и прежде всего ацилглицеринов являются насыщенные и ненасыщенные жирные кислоты. Именно эти кислоты определяют физико-химические свойства липидов (консис-тенцию, растворимость в органических растворителях, реакционную способность, температуру затвердевания и т.д.).

Ацилглицерины являются одним из основных компонентов химического состава продуктов животного, а в ряде случаев растительного происхождения, лимитирующими продолжительность хранения и технологические режимы переработки пищевого сырья и получения жира.

В состав ацилглицеринов тканевых жиров (говяжий, бараний, свиной, куриный, молочный) входят в основном жирные кислоты, содержащие 16-18 углеродных атомов (пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая). В меньшем количестве в составе ацилглицеринов представлены жирные кислоты, содержащие от 2 до 14 или от 20 до 22 углеродных атомов. Эти одноосновные кислоты могут быть насыщенными и ненасыщенными. В животных жирах содержится больше насыщенных кислот, в растительных - ненасыщенных (олеино-вой С18:1, линолевой С18:2, линоленовой С18:3, арахидоновой С20:4). Важ-ное биологическое значение имеют входящие в состав жиров ненасыщенные жирные кислоты с 18 углеродными атомами.

Биохимические и физико-химические изменения жиров

В процессе переработки и хранения жиросодержащих продуктов или выделенных из них жиров происходят многообразные превращения их под влиянием биологических, физических и химических факторов.

В результате этих превращений изменяется химический состав, ухудшаются органолептические показатели и пищевая ценность жиров, что может привести к их порче [20].

Независимо от технологических режимов переработки и хранения, а также вида жира в них протекают однотипные изменения, сводящиеся к гидролизу и окислению. Эти процессы протекают по схеме, представленной на рис. 1. Преобладание в жире гидролитического или окислительного процесса зависит от температуры, наличия кислорода, света, воды, продолжительности нагревания, присутствия веществ, ускоряющих или замедляющих эти процессы. Поэтому основные способы тепловой обработки жиросодержащих продуктов и жиров (варка, жарка) различаются по степени и характеру воздействия на жир. При варке преобладают гидролитические процессы, при жарке - окислительные. В любом случае качество жира оценивают по кислотному, перекисному, ацетильному числам, содержанию альдегидов, кетонов и других соединений.

Гидролитическое расщепление жиров протекает с обязательным участием воды и может быть как ферментативным, так и не ферментативным. В тканевых жирах, жире-сырце (внутренний жир), жире мяса, плодов и овощей, жире сырокопченостей и т.п. под влиянием тканевых липаз наблюдается гидролиз ацилглицеринов, сопровождающийся накоплением жирных кислот и, как следствие, повышением кислотного числа. Скорость и глубина гидролиза жира зависят от температуры: процесс ферментативного катализа значительно ускоряется при температуре выше 20°С; снижение температуры замедляет процесс гидролиза, но даже при минус 40°С ферментативная активность липаз проявляется, но в слабой мере.

При неблагоприятных условиях (влага, повышенная температура) может произойти гидролитическая порча жиров, вызванная не только действием ферментов, но и других факторов: кислот, щелочей, окислов металлов и других неорганических катализаторов, а также ферментов микроорганизмов.

Образование в жире при гидролитическом распаде небольшого количества высокомолекулярных жирных кислот не вызывает изменения вкуса и запаха продукта. Но если в составе триглицеридов (молочный жир) имеются низкомолекулярные кислоты, то при гидролизе могут появиться капроновая и масляная кислоты, характеризующиеся неприятным запахом и специфическим вкусом, резко ухудшающими органолептические свойства продукта.

 

 

Окисление Гидролиз

ЖИРЫ

Продукты Продукты

окисления гидролиза

                           
   
 
   
   
 
   
 
     
       
 
 
 

 


Перекиси Жирные Моно-и Глице-

Гидроперекиси кислоты дигли- рин

цериды

Кетоны Альдегиды Окси-

кисло-

ты

Низкомолекулярные

кислоты

 

Продукты полимеризации,

конденсации

Газообразные

продукты

 

 

Рис. 1. Схема превращения жиров

 

В топленых жирах автолитического (ферментативного) расщепления жиров не наблюдается, так как в процессе вытопки при температуре около 60°С липаза, содержащаяся в жировой ткани, инактивируется. Гидролитическая порча топленого жира происходит при наличии влаги, в результате обсеменения микрофлорой, неполной денатурации белков при вытопке жира из жировой ткани или под воздействием катализаторов.

Окислительные изменения. В процессе переработки и хранения жиров возможно ухудшение их качества в результате окислительных процессов, глубина и скорость которых зависят от природных свойств жира, температуры, наличия кислорода и света. Эти факторы могут вызвать окислительную порчу жиров.

Различают автоокисление и термическое окисление жиров. Автоокисление жиров протекает при низких температурах в присутствии газообразного кислорода. Термическое окисление происходит при температуре 140-200° С. Между термическим и автоокислением есть много общего, однако состав образующихся продуктов несколько различается.

Продукты, образующиеся при автоокислении и термоокислении, подразделяются на три группы:

1. Продукты окислительной деструкции жирных кислот, в результате которой образуются вещества с укороченной цепью.

2. Продукты изомеризации, а также окисленные ацилглицерины, которые содержат то же количество углеродных атомов, что и исходные ацилглицерины, но отличаются от последних наличием в углеводородных частях молекул жирных кислот новых функциональных групп, содержащих кислород.

3. Продукты окисления, содержащие полимеризованные или конденсированные жирные кислоты, в которых могут находиться и новые функциональные группы, имеющие в своем составе кислород.

Кроме того, продукты окисления делятся на термостойкие и нетермостойкие.

Первичными продуктами окисления являются перекиси, активирующие окисление других молекул. Благодаря этому реакция окисления носит цепной характер. Механизм окисления жиров в настоящее время изучен. Теория цепных реакций разработана академиком Н. Н. Семеновым и его учениками при изучении кинетики химических процессов. Процессы окисления жиров подробно изложены в ряде учебников [15, 19, 20], поэтому в данном разделе подробно не излагаются.

Окислению подвергаются в первую очередь ненасыщенные жирные кислоты, но могут окисляться также и насыщенные кислоты с образованием гидроперекисей. При глубоком окислении жиров возможно образование циклических перекисей -СН-СН-СН-СН2- и

эпоксидных соединений

-СН-СН-СН2- ½ ½

\ / О - О

О

 

Содержание перекисных соединений в жире оценивают по величине перекисного числа. Это довольно чувствительный показатель, и по его значению судят о начале и глубине окисления жира. В свежем жире перекисей нет. На начальных стадиях окисления в течение некоторого времени химические и органолептические показатели жира почти не изменяются. Этот период, имеющий различную продолжительность, называется индукционным. После индукционного периода жир начинает портиться. Обнаруживается это по увеличению перекисного числа и изменению органолептических свойств жира.

Наличие индукционного периода объясняется тем, что в начале процесса молекул с повышенной кинетической энергией (возбужденных или свободных радикалов) очень мало. Обусловлено это также содержанием в жире естественных антиокислителей: каротиноидов, токоферолов, лецитинов, которые более активно взаимодействуют со свободными радикалами и с кислородом воздуха и тем самым препятствуют окислению жиров. Продолжительность индукционного периода зависит от концентрации антиокислителей, природы жира и условий переработки и хранения.

Животные жиры, в составе которых меньше ненасыщенных жирных кислот, более устойчивы, чем растительные.

Процесс автоокисления жиров значительно ускоряется в присутствии влаги, света и катализаторов. Такими катализаторами могут быть легкоокисляющиеся металлы (окислы или соли железа, меди, свинца, олова), а также органические соединения, содержащие железо, белки, гемоглобин, цитохромы и другие.

Каталитическое действие металлов основано на способности их легко присоединять или отдавать электроны, что приводит к образованию свободных радикалов из гидроперекисей жирных кислот.

Активными катализаторами являются ферменты, главным образом ферменты микроорганизмов. Поэтому загрязнение жиров, особенно бактериальное обсеменение, ускоряет процесс окисления жиров.

Перекиси и гидроперекиси являются неустойчивыми соединениями, поэтому происходит их распад с образованием свободных радикалов, например, R-О-О-Н ¾® RО· + ·ОН и других.

При этом протекают последующие разнообразные реакции, в результате которых накапливаются вторичные продукты: оксисоединения, альдегиды, кетоны, низкомолекулярные кислоты и другие.

При окислении жиров обнаружен ряд альдегидов, представляющих собой продукты распада цепи жирных кислот: нониловый, азолаиновый, гептиловый, малоновый. Дальнейшее превращение низкомолекулярных альдегидов ведет к появлению низкомолекулярных спиртов, жирных кислот и к новому разветвлению окислительной цепи.

Кетоны, как и альдегиды, образуются окислительным путем в результате дальнейших превращений перекисей, например, в результате их дегидратации.

 

-СН2-СН-СН2- ¾® -СН2-С-СН2- + Н 2О

½

О-О-Н О

 

Предполагают, что в присутствии ферментов микроорганизмов кетоны могут образовываться по типу b-окисления, т. е. с участием воды.

Окислительная порча жиров

При окислении жиров теряется естественная окраска; специфический вкус и запах продукта; появляется посторонний, иногда неприятный привкус, аромат; теряется биологическая ценность.

Первичные продукты окисления - перекиси - органолептически не обнаруживаются, однако, по их содержанию можно судить о глубине порчи жира, пригодности его для длительного хранения и употребления в пищу.

Вторичные продукты окисления ухудшают органолептические показатели жира. При этом различают два основных вида порчи жира - прогоркание и осаливание.

Прогоркание происходит в результате накопления в жирах низкомолекулярных продуктов: альдегидов, кетонов, низкомолекулярных жирных кислот. В этом случае жир приобретает прогорклый вкус и резкий, неприятный запах. Прогоркание жиров может происходить вследствие химических и биохимических процессов.

При химическом прогоркании, протекающем в жире под действием кислорода воздуха, накапливаются свободные жирные кислоты, иногда низкомолекулярные, не свойственные данному жиру, увеличивается перекисное число, образуются летучие карбонильные соединения - альдегиды и кетоны. Именно эти соединения придают запах прогорклости жиру.

При биохимическом прогоркании, протекающем с участием ферментов плесеней, образуются кетокислоты и метилалкилкетоны в результате b-окисления свободных жирных кислот, образующихся при гидролизе под действием липаз. При этом из кислот образуются кетоны, содержащие на один атом углерода меньше, чем в исходной кислоте: из капроновой - метилпропилкетон, каприновой - метилгептилкетон, лауриновой - метилонилкетон и т.д.

Кетонное прогоркание иногда называют "душистым прогорканием" в связи со своеобразным запахом продуктов окислительной порчи.

Осаливание жиров сопровождается исчезновением окраски, уплотнением жира и появлением салистой консистенции в результате окислительных изменений жира. При осаливании образуется значительное количество оксисоединений в результате распада на свету первичных органических перекисей и появления свободных радикалов ОН и НО при фотохимическом воздействии на жир.

Возникающие радикалы, взаимодействуя с молекулами жирных кислот, образуют оксикислоты. Количество их определяют по ацетильному числу, которое возрастает с увеличением количества оксигрупп.

Образовавшиеся оксикислоты вовлекаются в процесс полимеризации, в результате чего образуются высокомолекулярные соединения и жир приобретает характ

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...