Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация витаминов и их производных




 

  Буквенное   Химическое Химические формы   Физиоло-
обозна- название Биологи- Биологически активные гическое
чение   чески не- активные Производ-ные Коферменты название
           

Жирорастворимые витамины

А Ретинол Ретинола-цетат, ретинолпаль- митат Ретинол, ретиналь, ретиноевая кислота   Антиксеро-фтальмиче-ский
D Кальци- феролы Эргокаль-циферол (D2), холекаль- циферол (D3) 1,2,5-диги-дрокаль- цифирол   Антирахи-тический
Е Токофе- ролы   a,b,g,d-то-коферолы, токотрие-нолы и их эфиры   Антисте- рильный  
К Нафтохи- ноны   Филохинон (К 1), менахинон (К 2)   Антигемор-рогический

 

 

Продолжение табл. 3

  Буквенное   Химическое Химические формы   Физиоло-    
обозна- название Биологи- Биологически активные гическое    
чение   чески не- активные Производ-ные Коферменты название  
                   

Витаминоподобные жирорастворимые вещества

F Эссенци- альные жирные кислоты   Олеиновая, линолевая, линолено-вая, арахидоновая    
F Убихинон (кофер-мент Q)     Убихинон (КоQ), убихинол (КоQ.Н2)  

 

Водорастворимые витамины

В1 Тиамин Тиамин   Тиаминоди-фосфат, тиамино-трифосфат Антине-вритный
В2 Рибо- флавин Рибофлавин   ФМН, ФМН.Н2 ФАД, ФАД.Н2 Витамин роста  
В3 Пантоте-новая кислота Пантотенат   Пантетеин-4-фосфат, КоА, дефосфо- КоА  
В5 (РР) Ниацин Никотин-амид, никотиновая кислота   НАД НАД.Н2, НАД.Ф НАД.Ф Н2 Антипел- лагричес- кий  
В6 Пиридок-син Пиридоксин, пириоксамин, пиридоксаль   ПАП.Ф, ПАМ.Ф Антидер- матитный
В9с) Фолацин (фолиевая кислота) Фолацин   Тетрагид-рофолиевая кислота и ее производные с одноуглеродными радикалами Фактор роста

Продолжение табл. 3

  Буквенное   Химическое Химические формы   Физиоло-  
обозна- название Биологи- Биологически активные гическое  
чение   чески не- активные Производ-ные Коферменты название  
В12 Цианко-баламин Цианкоба-ламин, оксикобаламин, нинтриткобаламин   Метилкоба- ламин, дезоксиаде- нозилкаба- ламин Антиане- мический  
Н Биотин Биотин   Карбокси- биотин Антисебо- рейный  
С Аскорби- новая кислота Дегидроас- корбиновая кислота Аскорби-новая кислота   Антицин- готный  
                   

Витаминоподобные водорастворимые вещества

  Холин Холин Фосфохо-лин    
Р Биофла-вононол   Флавоны: рутин, кверцетин, флавононы, геспередин, комплекс катехинов   Капилля- роукреп- ляющий    
В8 Инозит   Инозит, мезоинозит, мионозит, дифосфо-инозит, норцефалин    
N Липоевая кислота Липоевая кислота   Липамид, окисленная и восстановленная формы  
  Карнитин Карнитин, ацилкар-нитин      
В13 Оротовая кислота Оротовая кислота Оротин-5- фосфат   Фактор роста
В15 Пангамо-вая кислота Пангамовая кислота     Антионок- сический  

Окончание табл. 3

  Буквенное   Химическое Химические формы   Физиологи-      
обозна- название Биологи- Биологически активные ческое    
чение   чески не- активные Производ-ные Коферменты название  
U S-метил-метионин   S-метил-метионин, метилме- тионин-сульфонит   Антиязвен- ный     Витамин для микроорганизмов  
  Параамино-бензойная кислота (ПАБК) Параамино-бензойная кислота Фолиевая кислота   Витамин для микроорганизмов        
                             

 

Отсутствие, недостаточное (гиповитаминоз) или избыточное (гипервитаминоз) содержание в организме витаминов может приостановить или задержать образование важнейших ферментов и, следовательно, нарушить нормальный процесс обмена веществ.

Причины витаминной недостаточности организма многообразны, но можно выделить две главные группы факторов:

- алиментарные (пищевые), приводящие к возникновению первичных гиповитаминозов;

- заболевания, ведущие к развитию вторичных гиповитаминозов.

Это деление условно, так как нередки сочетания указанных факторов (смешанные формы гиповитаминозов).

К основным причинам алиментарной витаминной недостаточности относятся:

1. Неправильное по продуктовому набору питание. Недостаток в рационе овощей, фруктов и ягод, ведет к дефициту в организме витаминов С и Р. При употреблении рафинированных продуктов (сахар, изделия из муки высших сортов, очищенный рис и др.) поступает мало витаминов группы В. При длительном питании только растительной пищей в организме появляется недостаток витамина В12.

2. Сезонные колебания содержания витаминов в пищевых продуктах.

3. Неправильное хранение и кулинарная обработка продуктов ведут к значительным потерям витаминов, особенно С, А, В1, каротина, фолиевой кислоты.

4. Нарушение сбалансированности между пищевыми веществами в рационе. Даже при достаточном потреблении витаминов, но дефиците белков может возникнуть недостаточность в организме многих витаминов. Это обусловлено нарушением транспорта, образования активных форм и накопления в тканях витаминов. При избытке в питании углеводов, особенно за счет сахара и кондитерских изделий, может развиться В1-гиповитаминоз. Длительный дефицит или избыток в питании одних витаминов нарушает обмен других.

5. Повышенная потребность организма в витаминах, вызванная особенностями труда, быта, климата и т.п. Так, в условиях холодного климата, при воздействии химических или физических профессиональных или умственных нагрузок на 30-50% увеличивается потребность в витаминах.

При составлении рационов питания необходимо иметь в виду, что в плодах, овощах и ягодах содержатся аскорбиновая и фолиевая кислоты, b-каротин и витамин Р. Витамины группы В имеются в различных крупах, бобовых культурах, хлебе из муки низших сортов, яйцах, мясе и рыбе. Витамин В12 содержится в основном в печени животных и рыб, мясе и рыбе, в яйцах и молочных продуктах. Источником витамина А являются печень и жир животных, икра рыб, яйца и молочные продукты. Витамин Е имеется в растительных маслах и соответственно в исходных продуктах для их изготовления (семена подсолнечника, кукурузы, сои и т.д.), в орехах, зерновых и бобовых культурах, молочных продуктах, печени и почках животных, яйцах. Минимальный витаминный набор должен быть представлен витаминами А, Е, С и Р, группы В (В1, В2, В6, РР, фолиевая кислота и В12), для детей - дополнительно еще витамином D. Витамины активируют и нормализуют обменные процессы, положительно влияют на общую активность и сопротивляемость организма и состояние отдельных органов и систем.

Более подробно ознакомиться с содержанием витаминов в различных пищевых продуктах и с их ролью в обменных процес- сах можно по учебникам, справочникам и научной литературе [10, 11, 13, 21, 22, 23].

Фенольные соединения

К фенольным соединениям ФС относится обширный класс циклических веществ, являющихся производными ароматического спир- та - фенола (С6Н5ОН). В молекуле фенольных соединений имеется ароматическое кольцо, содержащее одну или несколько гидроксильных групп. Фенольные соединения находятся в растениях, плодах и овощах преимущественно в виде гликозидов и реже в свободном виде [24].

Биосинтез фенольных соединений в растительной клетке происходит в протоплазме, в частности, в хлоропластах. Однако основная масса водорастворимых фенолов сосредоточена в вакуолях, ограниченных от цитоплазмы белково-липидной мембраной - тонопластом, который регулирует участие веществ, содержащихся в вакуолях, в метаболизме клетки. В животном организме фенольные соединения не синтезируются, а поступают с растительной пищей и участвуют в обменных процессах.

К гликозидам относятся разнообразные вещества, у которых какой-либо сахар (чаще - глюкоза, реже - другие моносахариды) соединен за счет гликозидного гидроксила с другими веществами, не являющимися сахарами (спиртами, альдегидами, фенолами, алкалоидами, стероидами и др.). Вторая часть молекулы гликозидов называется агликоном (не сахар).

От содержания и превращений фенольных соединений зависят цвет и аромат плодов, качество чая, кофе, вина. Многие фенолы обладают свойствами витамина Р и являются антиоксидантами.

Все фенольные соединения являются активными метаболитами клеточного обмена и играют важную роль в различных физиологических функциях растений, плодов, картофеля и овощей - дыхании, росте, устойчивости к инфекционным заболеваниям.

О важной биологической роли фенольных соединений свидетельствует их распределение в растительной ткани. Разные органы и ткани растений, плодов и овощей различаются не только количественным содержанием фенолов, но и качественным их составом.

В настоящее время известно более 2000 фенольных соединений, существенно различающихся по своим свойствам. В связи с этим важное значение имеет классификация фенольных соединений, представленная на рис. 3.

Фенольные соединения условно разделяются на три основные группы [24]:

1. Мономерные.

2. Димерные.

3. Полимерные.

Мономерные фенольные соединения содержат одно ароматиче-ское кольцо и делятся на три подгруппы:

- соединения С6-ряда, состоящие из ароматического кольца без углеродных боковых цепей; к ним относятся гидрохинон, пирокатехин и его производные, гваякол, флороглюцин, пирогаллол. Все они содержатся в растениях главным образом в связанном виде;

- соединения с основной структурой С61-ряда включают в себя группу фенолкарбоновых кислот и их производных - протокатеховую, ванилиновую, галловую, салициловую, оксибензойную и другие

 

кислоты; эти соединения встречаются в плодах и овощах в свободном виде;

- соединения с основной структурой С63-ряда, состоящие из ароматического кольца и трехуглеродной боковой цепи, делятся на коричные кислоты, кумарины и производные последних: изокумарины, фурокумарины.

Кумарины рассматриваются как лактоны оксикоричных кислот. Наиболее распространенными коричными кислотами являются п-ку-маровая, кофейная, феруловая и синаповая.


 
 


Фенолы

Мономерные
Димерные С636
Полимерные

 

                                                         
 
     
   
 
 
 
   
     
Конденсиро- ванные, негидроли- зуемые
     
Гидроли- зуемые
 
 
   
     
     
 
 
   
 
 
       
       
Галлотан- ниды
 
 
 
   
Изоку- марины
     
Фуроку- марины
 
 

 


Катехины
Лейкоан- тоцианы
Флавоны
Флаваноны
Ауроны
Холконы
Флаво- нолы    
Антоцианы  
Флавано- нолы
ô ô ô ô ô ô ô ô ô
 

 

Рис. 3. Классификация фенольных соединений


Фенолкарбоновые кислоты, обладая фенольными и кислотными группами, могут реагировать друг с другом с образованием соединений типа сложных эфиров, называемых депсидами. Если в реакции участвуют две фенолкарбоновые кислоты, то образуется дидепсид, если три - тридепсид и т.п. Соединения С63-ряда участвуют в формировании аромата и вкуса плодов и овощей.

Димерные фенольные соединения имеют основную структуру с двумя ароматическими кольцами С636 и делятся на флавоноиды и изофлавоноиды (ротеноиды). Эти соединения наиболее широко распространены в природе, и многие из них принимают участие в формировании аромата и цвета растительных продуктов.

В зависимости от структуры связующего трехуглеродного фрагмента в молекуле и степени окисленности флавоноиды подразделяются на катехины, лейкоантоцианы, флаваноны, флаванонолы, антоцианы, флавоны, флавонолы и другие (см. рис. 3). Наиболее восстановленные соединения - катехины, наиболее окисленные - флавонолы.

Катехины - бесцветные соединения, легко окисляются, в результате чего приобретают разную окраску. Например, различный цвет чая (черный, красновато-коричневый, желтый) обусловлен степенью окисления катехинов, содержащихся в чайном листе. Существует несколько форм катехинов: катехин, галлокатехин, галлокатехингаллат и другие. Каждый катехин может существовать в виде четырех оптических изомеров, различающихся по направлению и величине угла вращения: (+)-катехин, (-)-катехин; (+)-эпикатехин, (-)-эпикатехин. Кроме того, для каждого катехина известны два рацемата - смесь, лишенная оптической активности: (+)-катехин и (+)-эпикатехин. Все они отличаются по физическим свойствам и биологическому действию. Например, высокой Р-витаминной активностью обладает (-)-эпикатехин.

В плодах и овощах катехины могут присутствовать в свободном и связанном состоянии (в составе полимерных форм). Много катехинов содержится в винограде, айве, черной смородине, яблоках, черноплодной рябине, косточковых плодах и ягодах.

Катехины хорошо растворимы в воде, имеют слабый вяжущий вкус, легко окисляются на свету, при нагревании, особенно в щелочной среде под действием окислительных ферментов (фенолоксидазы и пероксидазы). Продукты окисления - хиноны - и полимеризации катехинов - флобафены - придают плодам и овощам при термической и механической обработке темную окраску.

Окисление фенольных соединений может быть обратимым и необратимым. Этот процесс происходит и в здоровых, неповрежденных растительных клетках, но ткань их при этом не темнеет. Это обусловлено тем, что через тонопласт в цитоплазму поступает строго ограниченное количество фенолов, рассчитанное на тот ферментативный аппарат, который имеется в цитоплазме.

При окислении в здоровой клетке часть фенолов окисляется до карбоновых кислот и в качестве конечных продуктов окисления образуются СО2 и Н2О.

Часть же промежуточных продуктов окисления фенолов с помощью ферментов фенолоксидазы и пероксидазы, а также восстановителей, вновь восстанавливается до исходных соединений.

В поврежденных клетках в контакте с о-фенолоксидазой оказывается сразу большое количество фенолов и поэтому восстановления не происходит, а образующиеся хиноны необратимо конденсируются как между собой, так и с аминокислотами с образованием коричневых и красных аморфных веществ - флобафенов.

 


 

 

Например, причиной потемнения очищенных и нарезанных клубней картофеля является окисление аминокислоты фенольного ха-рактера - тирозина (a-оксифенилаланин). Тирозин окисляется до диоксифенилаланина, который превращается в хинон, образующий красные гетероциклические соединения. Хиноны полимеризуются и превращаются в продукты темного цвета - меланины.

Образование темноокрашенных веществ при хранении очищенного картофеля может происходить в результате окисления другого вещества фенольной природы - хлорогеновой кислоты. Потемнение внутренней сердцевины картофеля связано с окислением хлорогеновой кислоты, а внешней сердцевины - с окислением тирозина.

Предотвратить окисление фенолов очень важно при производстве крахмала, так как образующийся при измельчении картофеля клеточный сок содержит наряду с другими веществами тирозин. Последний легко окисляется, что вызывает потемнение крахмала, ухудшение его качества. Быстрое отделение клеточного сока от крахмала на центрифуге позволяет получить крахмал высокого качества.

Для предотвращения потемнения плодов и овощей при чистке, резке и дроблении применяют различные вещества (диоксид серы, аскорбиновую, лимонную кислоты и др.), а также тепловую обработку для инактивации фенолоксидаз, пероксидаз и каталазы.

На предприятиях общественного питания применяется сульфитация очищенного картофеля, заключающаяся в обработке клубней слабым раствором диоксида серы (0,1-0,2%).

Лейкоантоцианы, флаваноны и флаванонолы - это бесцветные фенольные соединения. Лейкоантоцианы изменяют окраску в зависимости от температуры. Так, при 135°С они имеют желтый цвет, при 165°С - винно-красный, выше 225°С - сине-серый, при 260°С - черный. При нагревании они превращаются в лейкоантоцианидины. Лейкоан-тоцианы в значительном количестве содержатся в плодах и овощах, придавая некоторым из них терпкий вкус.

Флаваноны и флаванонолы в свободном виде встречаются редко, чаще в форме гликозидов. Богаты ими цитрусовые плоды, в которых содержатся нарингенин, гесперидин и эридиктол.

 
 

 

 


 

Лейкоантоцианы Флаваноны Флаванонолы

 

Флавоновые пигменты - это окрашенные фенольные соединения: антоцианы, флавоны и флавонолы. Эти фенольные гликозиды хорошо растворимы в воде, обладают бактерицидными свойствами. Они содержатся во многих плодах и овощах, отличаются повышенной окислительной способностью. Антоцианы имеют фиолетовый цвет, флавоны и флавонолы - желтый.

Антоцианы. Они представляют собой гликозиды, в которых остатки сахаров (глюкозы, галактозы и рамнозы) связаны с окрашенными агликонами, принадлежащими к группе антоцианидинов. Раз- личают шесть антоцианидинов, составляющих агликоны антоцианов - пеларгонидин, цианидин, пеонидин, дельфинидин, петунидин, мальвидин. В зависимости от наличия этих соединений плоды имеют разную окраску.

Наиболее распространен цианидин, он обнаружен в яблоках, землянике, сливах и в других плодах. В некоторых плодах антоцианы находятся только в кожице (виноград, слива), в других - в кожице и мякоти (малина, черника, смородина).

В зависимости от рН окраска антоцианов может меняться от кра-сной до синей и фиолетовой (в кислой среде - красные, в щелочной -синие). Антоцианы с ионами К, Nа, Fе и других металлов дают соединения синего цвета.

Флавоны - это пигменты, имеющие желтую окраску; содержат-ся во многих плодах и овощах. Флавоны являются предшественниками антоцианов.

Флавонолы отличаются от флавонов наличием гидроксильной группы и обладают сильными бактерицидными свойствами. Чаще всего в плодах и овощах из флавонолов распространены кверцетин, кемферол, рутин и мирицетин. Кверцетин - самый распространенный флавонол придает золотистый цвет кожице лука, облепихе.

 


Антоцианы Флавоны Флавонолы

Полимерные фенольные соединения делятся на гидролизуемые и негидролизуемые конденсированные дубильные вещества.

Гидролизуемые вещества - танины - это сложные эфиры моносахаридов (глюкозы) и фенольных кислот (галловой, эллаговой, протокатеховой, кофейной, хлорогеновой).

Танины легко подвергаются гидролизу, распадаясь на более простые соединения. Танины взаимодействуют с солями тяжелых металлов, вызывая изменения цвета продуктов переработки плодов и овощей.

Гидролиз дубильных веществ приводит к ослаблению или исчезновению терпкого вкуса плодов и к накоплению сахаров, что улучшает вкус. Кроме того, продукты распада танинов - фенольные кислоты - усиливают защитные свойства плодов и овощей.

Гидролиз дубильных веществ наблюдается при дозревании плодов и овощей, нанесении механических повреждений и поражении микроорганизмами. Чаще всего при этом накапливается хлорогеновая кислота.

Негидролизуемые вещества состоят из остатков катехинов и лей-коантоцианов и образуются при окислительной конденсации этих мономеров. Конденсация флавоноидов происходит при нагревании с разбавленными кислотами. Конденсированные дубильные вещества с солями железа дают темно-зеленое окрашивание.

Конденсированные дубильные вещества содержат мало углеводов и образуют в присутствии минеральных кислот нерастворимые аморфные соединения - флобафены.

Существенным качественным и количественным изменениям подвергаются фенольные соединения в плодах и овощах в процессе созревания и хранения. Количество их уменьшается за счет гидролиза и использования на дыхание. В то же время при созревании плодов и овощей такие фенолы, как антоцианы, флавоны, флаваноны, флавонолы синтезируются и улучшают цвет продуктов. В процессе хранения плодов и овощей происходит взаимопревращение фенольных соединений. Так, при гидролизе танина образуются фенолокислоты, при конденсации катехинов - конденсированные дубильные вещества.

Минеральные вещества

В пищевом сырье и продуктах питания животного и растительного происхождения наряду с органическими веществами содержатся минеральные (неорганические) вещества, к которым относятся вода и минеральные элементы. Минеральные вещества не обладают энергетической ценностью, но имеют исключительно важное значение в обменных процессах организма человека и поэтому должны поступать с пищей в соответствии с физиологической потребностью в них.

Вода

Вода и продукты ее диссоциации - водородные и гидроксильные ионы - являются важными факторами, определяющими структуру и биологические свойства белков, нуклеиновых кислот, липидов, а также мембран и других клеточных органелл.

Вода отличается высокой реакционной способностью, обладает необычными свойствами и очень сильно отличается как в химическом, так и в физическом отношении от большинства других жидкостей.

Свойства воды, содержащейся в продуктах, отличаются от свойств обычной воды. Установлены различия в теплофизических свойствах, таких, как начальная температура кристаллизации, коэффициент термодинамической активности.

По сравнению с другими жидкостями вода имеет необычайно высокие температуры плавления и кипения, теплоту испарения, удельную теплоемкость, теплоту плавления, а также большое поверхностное натяжение. Эта особенность воды обусловлена тем, что силы притяжения между молекулами жидкой воды очень велики, и, следовательно, велико их внутреннее сцепление.

Такие свойства молекул воды, как полярность и способность к образованию водородных связей, делают воду великолепным растворителем полярных и нейтральных молекул. Вода диспергирует амфипатические вещества (полярные липиды, мыла) с образованием мицелл, в которых гидрофобные группы спрятаны внутрь и не контактируют с водой, а полярные группы располагаются на наружной поверхности мицелл.

Являясь основным (по массе) компонентом пищевого сырья и большинства продуктов питания вода влияет на их консистенцию и структуру; ее взаимодействие с химическими компонентами продуктов влияет на их устойчивость при хранении.

Массовая доля воды в пищевом сырье и продуктах питания колеблется в широких пределах (от 8 до 96%) в зависимости от вида сырья и продуктов, способов их обработки и технологии пищевых производств. Например, массовая доля воды в мясе, рыбе, мясо- и рыбопродуктах составляет 26-38%, в плодоовощной продукции 78-96%, в молоке 86-89%.

Организм человека на 2/3 состоит из воды, причем в разных частях и органах содержится неодинаковое ее количество. При введении в пищевой рацион необходимого количества жидкости обеспечивается надлежащий объем пищи, который создает чувство насыщения. Суточная потребность в воде в среднем составляет 35-40 мл на один килограмм массы тела или около 2,0-2,5 л. Значительная часть этой нормы (около одного литра) содержится в пищевых продуктах. Так называемая свободная жидкость, содержащаяся в первых блюдах и различных напитках, должна составлять около 1,2 л при общей массе дневного рациона около 3 кг. Количество воды, поступающее в организм с пищей и питьем, меняется в зависимости от климатических условий и интенсивности физической работы.

Функции воды в организме очень важны и многообразны: все реакции гидролиза пищевых веществ происходят при участии воды; вода растворяет органические и неорганические вещества, транспортирует их в организме; выводит отходы процессов обмена из клеток организма; является дисперсионной средой для крови, протоплазмы клеток и т.д.; служит смазочным материалом в суставах и в местах соприкосновения различных частей организма. Вот почему чрезвычайно важное значение имеет поступление в организм человека определенного количества воды с пищей и питьем.

При производстве продуктов питания необходимо учитывать, что пищевое сырье, продукты и пища представляют собой дисперсионную среду, а дисперсная фаза включает в себя органические и неорганические вещества с различной степенью дисперсности.

Воду в продуктах можно представить как непрерывную фазу, в которой другие составляющие (компоненты химического состава) могут быть распределены в виде истинных и коллоидных растворов, а также в виде эмульсий. Различные продукты неодинаково взаимодействуют с находящейся в них влагой.

Сахара, соли, кислоты, содержащиеся в растительных и животных тканях, образуют в основном истинные растворы. Равномерное распределение растворенных веществ, диффузия их через полупроницаемые мембраны происходит вследствие ионного или молекулярного диспергирования, оно не устраняет возможность локального образования насыщенных растворов.

Коллоидные растворы в продуктах образуются при растворении гидрофильных макромолекул, например, пектина и белков. Растворимость коллоидов, их водосвязывающая способность зависят от рН среды и являются минимальными в изоэлектрической точке.

При диспергировании в воде соединений низкой растворимости образуются эмульсии.

Для описания состояния воды в биологических объектах пользуются параметрами, характеризующими изменение свойств воды и других компонентов объекта под влиянием внешних факторов.

При исследовании свойств растворов, введены понятия свободной и связанной воды. Под свободной понимают такую воду, молекулы которой образуют структуру, близкую к стуктуре обычной воды. Свободная вода составляет около 95% от всей воды клетки; в ней растворены многочисленные пищевые вещества (сахара, органические кислоты, аминокислоты и др.); эта вода является более подвижной, чем связанная.

Связанная вода, на долю которой приходится 4-5% всей воды клетки, прочно соединена с коллоидами, образующими гетерогенную систему. Вода, связанная с частицами размером 10-1 -10-6 мм, образует вокруг них тонкую оболочку, которая прочно соединена с ними. Плотность связанной воды выше, чем свободной; удельная теплоемкость ниже (часть связанной воды в некоторых случаях не замерзает и при минус 75°С).

В большинстве случаев связанная вода не является растворителем для кристаллоидов и трудно удаляется при замораживании и сушке. Содержание в продуктах связанной воды колеблется в довольно широких пределах. В мясе оно составляет 13-16%, в плодах и овощах 8-11%, в молоке 3,0-3,5%. Поэтому из плодов и молока вода удаляется сравнительно легко.

Большая прочность связей между молекулами в жидкой воде обусловлена электрической полярностью молекул воды, связанной со специфическим расположением электронов в атомах кислорода и водорода [25].

Уменьшение количества связанной воды может служить признаком изменения (старения) коллоидной системы, поэтому раздельное определение свободной и связанной воды представляет большой научный и практический интерес.

Известно, что вода связана с компонентами пищевых продуктов энергетически неоднородно. Формы связи воды необходимо учитывать при переработке и хранении пищевого сырья и производства продуктов питания.

В ряде работ предлагаются схемы, по которым классифицируются формы связи воды в различных материалах, в том числе и в пищевых продуктах [25].

Академик П. А. Ребиндер предложил следующую классификацию форм связи влаги на основе энергии связи:

- механическая - влага смачивания, содержащаяся в капиллярах и макрокапиллярах. Эта форма связи наименее прочная; влага легко удаляется путем механического воздействия, например, посредством центрифугирования или прессования;

- физико-химическая - адсорбционная, осмотическая и структурная влага, содержащаяся в клетках и микрокапиллярах. Для разрушения этой формы связи требуется значительно больше энергии. Для удаления такой влаги необходимо предварительно превратить воду в пар, затратив существенное количество теплоты;

- химическая форма связи наиболее прочная. Это ионнная связь и вода в кристаллогидратах. Такая связь может быть разрушена либо путем химического воздействия, либо путем нагрева до высоких температур, например посредством прокаливания, но не всегда. Химически связанная вода удерживается продуктом в точных количественных соотношениях и не удаляется при замораживании и сушке.

При взаимодействии молекул воды с молекулами компонентов пищевых продуктов, различают водородные, ионные, гидрофобные и другие виды связи. Водородная связь характеризуется взаимодействием ионов водорода с молекулами воды в жидкой воде и во льду. Расположение электронов вокруг атома кислорода близко к тетраэдрическому, т.е. каждая молекула воды стремится связаться водородной связью с четырьмя соседними молекулами воды. Важная особенность водородных связей - их меньшая прочность по сравнению с ковалентными. Энергия водородных связей в жидкой воде составляет около 18,8 кДж.моль-1, а энергия ковалентной связи (в молекуле воды, образованной за счет спаривания электронов) равна 461 кДж.моль-1.

Другое важное свойство водородных связей - их строго определенное направление в пространстве, что связано с вполне конкретным направлением связывающих орбиталей атомов водорода и кислорода.

Скорость образования и разрыва водородных связей в водных системах значительно превосходит скорость образования и разрыва ковалентных связей. Именно поэтому водородные связи обладают существенным преимуществом по сравнению с ковалентными связями с позиции возможности реализации различного рода биомолекулярных процессов, протекающих при переработке и хранении пищевого сырья и продуктов питания.

Мерой прочности связи влаги в пищевых продуктах является активность воды, влияющая на ферментативные, химические и физические изменения в них.

Активность воды аw представляет собой отношение равновесного давления водяных паров над продуктом к равновесному давлению паров чистой воды при одних и тех же температурах. Этот показатель служит количественной оценкой качественного изменения связи воды в продукте по отношению к чистой (дистиллированной) воде.

Для чистой воды аw = 1; уменьшается при растворении в воде различных веществ. Устойчивость пищевых продуктов к микроорганизмам при их хранении зависит от активности воды окружающей среды и пищевого продукта. Микроорганизмы могут расти на продуктах, имеющих значение показателя аw между 0,99 и 0,63. Для многих микроорганизмов эти величины определены, они постоянны для каждого вида и не зависят от природы растворенных веществ. По мере уменьшения аw среды (начиная с оптимального значения) продолжительность лаг-фазы обычно увеличивается, а скорость роста и количество клеток микроорганизмов уменьшаются. В целом, бактерии развиваются в среде с более высокими значениями аw (0,99-0,93), чем дрожжи и плесени. Оптимальные значения а w для роста дрожжей также варьируют, но минимальные величины для этих организмов (0,91-0,88) ниже, чем для большинства бактерий.

Минеральные элементы

Минеральные элементы делятся на макро- и

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...