Физическое строение жидкости.
Жидкостью в гидравлике называют физическое тело способное изменять свою форму при воздействии на нее сколь угодно малых сил. Различают два вида жидкостей: жидкости капельные и жидкости газообразные (рис.1.2). Капельные жидкости представляют собой жидкости в обычном, общепринятом понимании этого слова (вода, нефть, керосин, масло и.т.д.). Газообразные жидкости - газы, в обычных условиях представляют собой газообразные вещества (воздух, кислород, азот, пропан и т.д.). Основной отличительной особенностью капельных и газообразных жидкостей является способность сжиматься (изменять объем) под воздействием внешних сил. Капельные жидкости (в дальнейшем просто жидкости) трудно поддаются сжатию, а газообразные жидкости (газы) сжимаются довольно легко, т.е. при воздействии небольших усилий способны изменить свой объем в несколько раз (рис.1.3). В гидравлике рассматриваются реальная и идеальная жидкости. Идеальная жидкость в отличие от реальной жидкости не обладает внутренним трением, а также трением о стенки сосудов и трубопроводов, по которым она движется. Идеальная жидкость также обладает абсолютной несжимаемостью. Такая жидкость не существует в действительности, и была придумана для облегчения и упрощения ряда теоретических выводов и исследований.
Основные свойства жидкости. Сжимаемость – свойство жидкости изменять свой объем под действием давления. Сжимаемость жидкости характеризуется коэффициентом объемного сжатия, который определяется по формуле
где V – первоначальный объем жидкости, Плотностью жидкости называют массу жидкости заключенную в единице объема.
Температурное расширение – относительное изменение объема жидкости при увеличении температуры на 1°С при Р = const. Характеризуется коэффициентом температурного расширения Вязкость жидкости – свойство жидкости сопротивляться скольжению или сдвигу ее слоев. Суть ее заключается в возникновении внутренней силы трения между движущимися слоями жидкости, которая определяется по формуле Ньютона где S – площадь слоев жидкости или стенки, соприкасающейся с жидкостью, м2, μ – динамический коэффициент вязкости, или сила вязкостного трения, Отсюда динамическая вязкость равна где τ - касательные напряжения жидкости, τ = T/S. Испаряемость жидкости. Испаряемость свойственна всем капельным жидкостям, однако интенсивность испарения неодинакова у различных жидкостей и зависит от условий в которых она находится: от температуры, от площади испарения, от давления, и от скорости движения газообразной среды над свободной поверхностью жидкости (от ветра). Растворимость газов в жидкостях характеризуется объемом растворенного газа в единице объема жидкости и определяется по закону Генри: где VГ – объем растворенного газа; VЖ – объем жидкости; k – коэффициент растворимости; Р – давление; Ра – атмосферное давление.
Режимы движения жидкости. Установка Рейнольдса состоит из резервуара А с водой, от которого отходит стеклянная труба В с краном С на конце, и сосуда D с водным раствором краски, которая может по трубке вводиться тонкой струйкой внутрь стеклянной трубы В. Первый случай движения жидкости. Если немного приоткрыть кран С и дать возможность воде протекать в трубе с небольшой скоростью, а затем с помощью крана Е впустить краску в поток воды, то увидим, что введенная в трубу краска не будет перемешиваться с потоком воды. Струйка краски будет отчетливо видимой вдоль всей стеклянной трубы, что указывает на слоистый характер течения жидкости и на отсутствие перемешивания. Если при этом, если к трубе подсоединить пьезометр или трубку Пито, то они покажут неизменность давления и скорости по времени. Такой режим движения называется ламинарный.
Второй случай движения жидкости. При постепенном увеличении скорости течения воды в трубе путем открытия крана С картина течения вначале не меняется, но затем при определенной скорости течения наступает быстрое ее изменение. Струйка краски по выходе из трубки начинает колебаться, затем размывается и перемешивается с потоком воды, причем становятся заметными вихреобразования и вращательное движение жидкости. Пьезометр и трубка Пито при этом покажут непрерывные пульсации давления и скорости в потоке воды. Такое течение называется турбулентным (рис.4.1, вверху). Итак, ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсации скорости и давления. При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, при этом отсутствуют поперечные перемещения частиц жидкости. Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости с пульсациями скоростей и давлений. Наряду с основным продольным перемещением жидкости наблюдаются поперечные перемещения и вращательные движения отдельных объемов жидкости. Переход от ламинарного режима к турбулентному наблюдается при определенной скорости движения жидкости. Эта скорость называется критической υ кр. Значение этой скорости прямо пропорционально кинематической вязкости жидкости и обратно пропорционально диаметру трубы. где ν – кинематическая вязкость; k – безразмерный коэффициент; d – внутренний диаметр трубы. Входящий в эту формулу безразмерный коэффициент k, одинаков для всех жидкостей и газов, а также для любых диаметров труб. Этот коэффициент называется критическим числом Рейнольдса Reкр и определяется следующим образом: Как показ. опыт, для труб кругл. сечения Reкр примерн. равно 2300. Таким образом, критерий подобия Рейнольдса позволяет судить о режиме течения жидкости в трубе. При Re < Reкр течение является ламинарным, а при Re > Reкр течение является турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re примерно равно 4000, а при Re = 2300…4000 имеет место переходная, критическая область.
Режим движения жидкости напрямую влияет на степень гидравлического сопротивления трубопроводов. Кавитация В некоторых случаях при движении жидкости в закрытых руслах происходит явление, связанное с изменением агрегатного состояния жидкости, т.е. превращение ее в пар с выделением из жидкости растворенных в ней газов. Рис. 4.2. Схема трубки для демонстрации кавитации При небольшой скорости никаких видимых изменений в движении жидкости не происходит. При увеличении скорости движения жидкости в узком сечении трубки Вентури 2-2 появляется отчетливая зона с образованием пузырьков газа. Образуется область местного кипения, т.е. образование пара с выделением растворенного в воде газа. Далее при подходе жидкости к сечению 3-3 это явление исчезает. Это явление обусловлено следующим. Известно, что при движении жидкой или газообразной среды, давление в ней падает. Причем, чем выше скорость движения среды, тем давление в ней ниже. Поэтому, при течении жидкости через местное сужение 2-2, согласно уравнению неразрывности течений, увеличивается скорость с одновременным падением давления в этом месте. Если абсолютное давление при этом достигает значения равного давлению насыщенных паров жидкости при данной температуре или значения равного давлению, при котором начинается выделение из нее растворимых газов, то в данном месте потока наблюдается интенсивное парообразование (кипение) и выделение газов. Такое явление называется кавитацией. Таким образом, кавитация – это местное нарушение сплошности течения с образованием паровых и газовых пузырей (каверн), обусловленное местным падением давления в потоке. Кавитация в обычных случаях является нежелательным явлением, и ее не следует допускать в трубопроводах и других элементах гидросистем. Кавитация возникает в кранах, вентилях, задвижках, жиклерах и т.д.
Требования к жидкостям. Рабочая жидкость гидросистем должна обладать: · хорошими смазывающими свойствами; · минимальной зависимостью вязкости от температуры в требуемом диапазоне температур; · низкой упругостью насыщенных паров и высокой температурой кипения; · нейтральностью к применяемым материалам и в частности к резиновым уплотнителям и малым адсорбированием воздуха, а также легкостью его отделения; · высокой устойчивостью к механической и химической деструкции и к окислению в условиях применяемых температур, а также длительным сроком службы; · высоким объемным модулем упругости; · высокими коэффициентами теплопроводности и удельной теплоемкости и малым коэффициентом теплового расширения; · высокими изолирующими и диэлектрическими качествами; · жидкость и продукты ее разложения не должны быть токсичными. Важными параметрами характеристики жидкости являются температуры застывания и замерзания. Температурой застывания по ГОСТу 1929—51 называют такую наиболее высокую температуру, при которой поверхность уровня масла, залитого в стандартную пробирку, не перемещается при наклоне пробирки на 45° в течение 5 мин. Эта температура характеризует жидкость с точки зрения сохранения текучести, а следовательно, возможности транспортировки и слива в холодное время года. Температура застывания масла должна быть не менее чем на 10—17° С ниже наименьшей температуры окружающей среды, в условиях которой будет работать гидросистема.
Температурой замерзания называют температуру начала кристаллизации, т. е. температуру, при которой в жидкости образуется облачко из мельчайших кристаллов. При этом не должно быть расслаивания жидкости и выделения из нее составных компонентов. Жидкость не должна содержать легкоиспаряющиеся компоненты, испарение которых может привести при продолжительной эксплуатации к загустению жидкости. Огнестойкость жидкостей. Для многих случаев применения жидкости важной характеристикой является ее огнестойкость: жидкость не должна быть причиной возникновения или распространения пожара. Диэлектрические свойства. Для многих случаев применения изолирующие и диэлектрические свойства жидкостей. Воздействие жидкости на резиновые детали. Важным пара-метром, характеризующим качество рабочих жидкостей для гидросистем, является воздействие их на применяемые материалы и в частности на резиновые детали гидроагрегатов. Усадка, набухание и размягчение резиновых деталей уплотнительных узлов, происходящие под воздействием жидкости, сопровождаются нарушением герметичности и прочими дефектами в работе гидроагрегатов.
Методы описания движения. · Метод Лагранжа: движение жидкости задается путем движения зависимости изменения координат определ. частицы жидкости во времени. Она описывает в пространстве траекторию вдоль которой изменяется скоростьV. Т.О. для описания движения частицы переменными являются его скорость и ускорение и широкого применения этот не получил. · Метод Эйлера: в пространстве помечаются т.(1,2,3), через которые проходят частицы жидкости с неизменяемыми скоростями зависящими от времени t1,t2... Координаты точек не изменяются. Скорость объемов жидкости в неизвестный момент времени в прямоугольной декартовой системе координат описывается переменными Эйлера:
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|