Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Фильтрация рабочих жидкостей.




Отделение от жидкостей твердых загрязняющих примесей осуществляют механическим или силовым методами. В первом случае фильтрация осуществляется применением различных щелевых и пористых фильтровальных элементов (материалов), а во втором — применением силовых полей — магнитного, элек-трического применяют, центробежного и др. В гидросистемах машин преимущественно первый метод очистки, при котором от жидкости при проходе ею через фильтровальный элемент отделяются частицы вследствие различия размеров этих частиц и проходных капиллярных каналов фильтровального материала.

Существуют различные виды фильтров:

· Металлические проволочные сетки. В тех случаях, когда к фильтрам не предъявляется высоких требований по тонкости очистки, применяют металлические тканые сетки квадратного переплетения из проволоки (преимущественно латунной) круглого сечения. Фильтрующие качества этих фильтров (тонкость фильтрации и расход жидкости) характеризуются размером ячейки в свету и «плотностью» или площадью живого (проходного) сечения, ячеек в единице площади поверхности.

· Фильтры с бумажными элементами. Фильтры с бумажными и тканевыми элементами задерживают за один проход значительную (75%) часть твердых включений размером более 4—5 мкм. Магнитные фильтры жидкости. Для улавливания ферромагнитных частиц применяют также магнитные фильтры, которые обычно комбинируют с каким-либо щелевым (пористым) фильтром. Первой ступенью таких комбинирован­ных фильтров является магнитный элемент, задерживающий (улавливаю­щий) ферромагнитные частицы, а второй — пористый фильтр, который задер­живает диамагнитные загрязняющие частицы, а также ферромагнитные частицы, оторвавшиеся от первой части фильтра. Фильтры снабжают перепускным кла­паном (магнитной) ступени. Применение магнит­ного поля в подобном комбинированном фильтре повышает также тонкость фильтрации пористого фильтра.

· Центробежные ф-тры ж. В гидросистемах ряда машин при-меняются центробежные ф-тры ж. (центрифуги), которые очищают ж. от загрязняющих частиц с плотностью, превыш. плотность ж.

Гидроаккумуляторы.

Гидравлический аккумулятор – устройство, служа-щее для накаплива­ния рабочей жидкости, находящейся под избыточным давлением, получаю­щее и отдающее рабочую жидкость только попеременно. При примене-нии аккумуляторов представляется возможным пони-зить благодаря накапливанию гидравлической энергии в периоды пауз в потреб­лении ее исполнительными агрегатами гидросистем мощность насосов до средней мощности потребителей гидравлической энергии или же обеспечить в системах с эпизодическим действием пот-ребителей перерывы (паузы) в ра­боте насоса под нагруз.

Аккумулятор часто применяется как источник аварийного питания от­дельных ветвей гидросистемы в случае отказа (или выключения) основного источника (насоса) питания. В частности, к таким случаям относится пита­ние тормозной системы самолетов и других транспортных машин. Приме­нение аккумуляторов имеет особое преимущество в случае, когда требуется длительное время какой-либо участок гидросистемы выдержать под давле­нием (нагрузкой) при практическом отсутствии в нем расхода жидкости. К таким случаям относится, на­пример, длительная выдержка под давлением формуемых деталей из резины и прочих неметаллических материалов при их вулканизации.

При этом фильтр устанавливается в положение, при котором насос отсоединяется от системы и соединяется с баком, а рабочая полость силового цилиндра соединяется с аккумулятором.

Гидроцилиндры.

Гидроцилиндры – объемные гидродвигатели с прямолинейным, ограниченным по величине возвратно-поступательным движением выходного звена. Любой ГЦ состоит из корпуса 1, с внутренней цилиндрической расточкой и поршня 2 со штоком 3, выходящим из корпуса и соединяющимся с нагрузкой. Поршень разделяет цилиндр на поршневую и штоковую полости, герметизированные уплотнениями.

Гидростатическое давление рабочей жидкости, поступающей в цилиндр, передается на поршень и развивает усилие, которое преодолевает приложенную к штоку нагрузку и силу трения.

Классификация ГЦ производится по кинематическим конструкционным признакам основных элементов ГЦ, а также по схеме подвода рабочей жидкости. По кинематическим признакам ГЦ разделяются на две группы: 1) с неподвижным корпусом и подвижным поршнем, соединенным с нагрузкой; 2) с подвижным корпусом, соединенным с нагрузкой и неподвижным поршнем.

По конструкции поршня: 1) поршневые ГЦ, у которых ведомым звеном служит односторонний шток(рис.а,б) или двухсторонний шток(рис.в); 2) плунжерные ГЦ(рис.г), у которых ведомым элементом является плунжер, выполняющий функции одностороннего штока; 3) телескопические ГЦ, применяемые для получения больших ходов при ограниченной длине.

Двухкамерные цилиндры применяются в условиях, где ограничена возможность использования цилиндров большого диаметра, но не ограничена длина. Он состоит из последовательно расположенных на одной оси нескольких (2,3) цилиндров.

В зависимости от схемы подвода рабочей жидкости все ГЦ делятся на 2 группы: 1) ГЦ одностороннего действия – рабочая жидкость подается только в одну полость (рабочий ход совершается под действием давления жидкости, а возврат – пружиной, весом и т.п.); 2) ГЦ двустороннего действия.

Рабочая жидкость ГЦ подводится через корпус цилиндра или через каналы в штоке.

Гидроцилиндр одностороннего действия

 

Гидроцилиндр двустороннего дей­ствия

 

Вязкость жидкости.

Вязкость – свойство жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, ибо они проявляются только при ее движении благодаря наличию сил сцепления между ее молекулами. Характеристиками вязкости являются: динамический коэффициент вязкости μ и кинематический коэффициент вязкости ν.

Единицей динамического коэффициента вязкости в системе СИ - Па·с. Кинематический коэффициент вязкости ν = μ/ρ. Единицей кинематического коэффициента вязкости в системе СИ является м2

Вязкость жидкости с повышением температуры уменьшается. Влияние температуры на динамический коэффициент вязкости жидкостей оценивается формулой μ = μ0·eа(t-t0), где μ = μ0 – значения динамического коэффициента вязкости соответственно при температуре t и t0 градусов; а - показатель степени, зависящий от рода жидкости; для масел, например, значения его изменяются в пределах 0,025—0,035.

Для смазочных масел и жидкостей, применяемых в машинах и гидросистемах, предложена формула, связывающая кинематический коэффициент вязкости и температуру:

vt=ν50·(50/t0)n

где νt - кинематический коэффициент вязкости при температуре t0;

ν50 – кинематический коэф. вязкости при температуре 50 0С;

t – температура, при которой требуется определить вязкость, 0С;

n – показатель степени, изменяющийся в пределах от 1,3 до 3,5 и более в зависимости от значения ν50.

С достаточной точностью n может определяться выражением

n=lgν50+2,7.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...