Температурная зависимость теплоемкости
Согласно рассмотренной нами классической теории теплоемкости у газов она должна быть кратной и не зависеть от температуры. На рисунке 8.4 показан примерный вид температурной зависимости теплоемкости водорода, полученной экспериментально. Имеются три температурных интервала (, , ), на которых поведение приблизительно соответствует классической теории. Но число степеней свободы, молекул проявляющееся в теплоемкости, в каждом интервале различно. При промежуточных значениях температуры теплоемкость такова, что молекулы как бы имеют дробное количество степеней свободы. В соответствии со значением теплоемкости можно говорить, что при низких температурах молекулы участвуют только в поступательном движении – интервал , в интервале – в поступательном и вращательном, а при температурах, соответствующих интервалу включается еще и колебательная степень свободы: связь между атомами перестает быть жесткой. В интервалах температуры, соответствующие переходу от одного участка к другому, температурный ход теплоемкости может быть объяснен тем, что не все молекулы одновременно начинают участвовать в новом виде движения, и доля таких молекул увеличивается с ростом температуры. Объяснение такого поведения молекул может быть дано только квантовой механикой. Согласно квантовомеханическим представле-ниям энергия вращательного и колебательного движений может измениться только порциями определенной величины, т.е. квантуется. Промежуточных значений энергии у молекулы быть не может. Кроме того, порции энергии (кванты), а значит и расстояния между разрешенными значениями энергии для колебательного движения приблизительно на порядок больше, чем для вращательного движения (рисунок 8.5).
Энергии молекул, как и скорости, группируются вблизи некоторого наиболее вероятного значения. Подавляющая часть молекул имеет приданной температуре энергии не очень сильно отличающиеся от наиболее вероятного значения. Эти особенности энергетического спектра молекул приводят к тому, что при низких температурах, когда вероятное значение энергии намного меньше порции (кванта) энергии, необходимой для вовлечения молекулы во вращательное движение, в подавляющем большинстве молекулы будут участвовать только в поступательном движении. В интервале температур, когда наиболее вероятная энергия приблизительно равна кванту энергии вращательного движения, с ростом температуры все большая часть молекул начинает участвовать во вращательном движении. Соответственно теплоемкость в этом интервале быстро изменяется от до . При дальнейшем росте температуры характер движения молекул не изменяется до тех пор, пока вероятная энергия молекул не начнет приближаться к величине кванта колебательного движения. Достижение основной массой молекул энергий, соответствующих кванту колебательного движения, означает вовлечение большинства молекул в колебательное движение. Этому процессу соответствует второй участок быстрого роста теплоемкости. 8.4. ПОНЯТИЕ О ФУНКЦИИ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ Рассмотрим некоторую макроскопическую систему, и пусть какая-то характерная для системы величина может принимать дискретные значения:
Проведем большое количество измерений величины , так чтобы при каждом измерении система находилась бы в одном и том же определенном состоянии. Допустим, что результат появился в измерениях. Тогда, по определению отношение называется относительной частотой появления результата , а предел этого отношения при неограниченном возрастании
. (8.14) называется вероятностью появления результата . Отметим, что поскольку то Зная вероятности появления различных результатов, можно найти среднее значение измеряемой величины: . (8.15) Допустим теперь, что величина может принимать непрерывный ряд значений, т.е. имеет непрерывный спектр значений. Значения измеряемой величины будем откладывать вдоль некоторой оси. Разобьем ось значений на очень маленькие интервалы Пусть в результате проведения очень большого числа измерений в измерениях результат оказался в пределах от до в измерениях – от до , и т. д. в измерениях результат оказался в интервале от до и т.д. Если измерений количество достаточно велико, то вероятность того, что при измерении результат окажется в пределах от до . (8.16) Для наглядного изображения распределения вероятности получения результата в интервале от до , построим столбики шириной и высотой перпендикулярно оси . Полученная в результате такого построения диаграмма называется гистограммой. При ступенчатая линия, ограничивающая гистограмму сверху стремится к кривой. Функция, определяющая эту кривую, называется функцией распределения вероятностей. Действительно, площадь столбика шириной , ограниченного сверху графиком дает вероятность получения в результате изменения значения в интервале от до : . (8.17) Площадь, ограниченная всей кривой дает вероятность получения какого-либо значения . Поскольку какое-нибудь значение в результате измерения получается, эта вероятность равна единице: . (8.18) Знание позволяет находить среднее значение измеряемой величины . Действительно, результат, лежащий в окрестности получается в измерениях. По аналогии с соотношением (8.15) . (8.19) Приравнивая правые части (8.17) и (8.19), получаем: . (8.20) и находим: . (8.21) Сумму результатов измерений для тех случаев, когда оказался в интервале от до , дает произведение : . (8.22) Тогда сумма всех возможных результатов измерений будет равна . (8.23) Разделив эту сумму на общее число измерений , получим среднее значение . (8.24) . (8.24) Рассуждая аналогичным образом, приходим к выводу, что среднее значение произвольной функции от - находится по формуле . (8.25)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|