Геометрическая интерпретация потока
Поле всякого вектора можно задать с помощью линий, аналогичных силовым линиям . Представление поля с помощью линий вектора является весьма неточным, но очень полезно для наглядного представления о поле. В рамках этого представления потоку вектора можно придать очень наглядную геометрическую интерпретацию. При этом будем предполагать, что количество линий вектора достаточно для представления модуля вектора с заданной точностью. Для плоского элемента поверхности , нормаль к которому образует угол c вектором , число пересечений линий вектора с равно произведению густоты линий (т.е. модуля вектора) на площадь площадки, расположенной перпендикулярно силовым линиям в данной точке пространства. Очевидно, что количество линий, пересекающих и одинаково, а площади связаны соотношением: . (13.09) Поэтому (13.10) Поток вектора выражается таким же соотношением. Поэтому можно утверждать, что поток вектора через некоторую поверхность численно равен количеству пересечений линий вектора с этой поверхностью: (13.11) Необходимо, однако, учесть, что поток – величина алгебраическая. Если на рисунке 13.2 направление линий вектора изменить на противоположное, то поток станет отрицательным. Для совпадения знаков и пересечения с острым углом считают положительными, а с тупым – отрицательными. Большое значение имеет рассмотрение потока вектора через замкнутую поверхность. Для замкнутых поверхностей положительной считается внешняя нормаль и с «+» берутся пересечения, связанные с выходом наружу линий вектора. Пересечения при входе внутрь берутся с « – ». Обратим внимание на то, что если линии вектора непрерывны внутри поверхности, то каждая линия пересекает поверхность четное число раз: половину с «+», половину с « – » и, соответственно поток через поверхность оказывается равным нулю.
Если же линии обрываются или начинаются внутри S, то поток через S
Дивергенция вектора Вернемся к рассмотрению течения жидкости и поля вектора скорости частиц жидкости. Представим в окрестности некоторой точки воображаемую з амкнутую поверхность , ограничивающую объем . Если внутри в объеме жидкость не исчезает и не появляется, то линии вектора (они же линии тока жидкости) непрерывны, и . Если , то это означает, что внутри есть источники, мощность которых равна (стоки рассматриваем как источники с отрицательной мощностью). Под мощностью источника подразумевается объем жидкости, выбрасываемый им в единицу времени. Отношение есть средняя удельная мощность источников в . Поток вектора через поверхность и средняя удельная мощность источников в объеме интегрально, по объему , характеризует характер изменения поля и поведение вектора скорости частиц. Однако очень часто возникает необходимость более детального описания поведения поля вектора скорости, например интенсивности возникновения новых линий вектора в зависимости от координат. С этой целью естественно уменьшить мысленно объем . По определению предел отношения потока вектора через замкнутую поверхность, ограничивающую некоторый объем в окрестности заданной точки поля, к величине объема , при его стремлении к нулю, называют дивергенцией соответствующего вектора:
(13.12) (можно говорить о пределе удельной мощности источников вектора). Соответственно, по определению, для произвольного вектора дивергенцией называется величина (13.13) Геометрическая интерпретация потока вектора, как количества пересечений линий вектора с поверхностью, позволяет истолковать дивергенцию вектора , как функцию, равную плотности точек, в которых начинаются линии . В точках, где линии вектора заканчиваются дивергенция вектора отрицательна. По смыслу характеризует распределение в пространстве источников силовых линий и определяет плотность мощности источников вектора. Произведение дает мощность источников в объеме . Такое определение дивергенции не зависит от выбора системы координат, однако, неудобно для вычислений. 13.4 Выражение для в декартовой системе координат Возьмем в окрестности точки бесконечно малый объем в виде прямоугольного параллелепипеда с ребрами, параллельными осям координат величиной соответственно. Очевидно, что . Найдем поток через поверхность, ограничивающую . Для смотрящей на нас грани параллелепипеда единичная внешняя нормаль совпадает с направлением оси . Поэтому проекция вектора на направление нормали к этой грани , (13.14) где проекция вектора на ось . Для противоположной грани: , (13.15) Поскольку орт нормали направлен навстречу оси . Тогда суммарный поток вектора через грани, перпендикулярные оси : . (13.16) Изменение проекции на ось можно найти в виде: . (13.17) Поэтому поток через две грани . (13.18) Рассуждая аналогичным образом, для граней перпендикулярных двум другим осям системы координат, можно найти значения потоков: и . (13.19) Тогда поток через всю поверхность параллелепипеда . (13.20) Поэтому дивергенцию вектора в декартовой системе координат можно найти, воспользовавшись соотношением: . (13.21)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|