Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Соотношения векторного анализа




При использовании оператора Ñ необходимо помнить, что он является векторным и дифференциальным одновременно и действует на функции, записанные непосредственно после него.

Градиент произведения скалярных функций по правилам дифференцирования:

. (13.45)

Аналогично дивергенция произведения скалярной функции на векторную по правилам дифференцирования:

. (13.46)

Поскольку градиент является векторной функцией, то от него можно взять дивергенцию. При этом необходимо учесть векторный характер оператора Гамильтона:

. (13.47)

Считая Ñ вектором, преобразуем правую часть (13.46):

 

. (13.48)

Поскольку квадрат оператора Гамильтона часто встречается в выражениях

,

его обозначают одним символом и называют оператором ЛАПЛАСА.

Поэтому для дивергенции градиента скалярной функции можем записать:

. (13.49)

Дивергенция ротора с точки зрения векторного анализа представляет собой смешанное произведение векторов, в котором два вектора одинаковы. Геометрический смысл смешанного произведения – объем параллелепипеда, построенного на векторах. Но если в произведении два одинаковых вектора, то объем равен нулю! Поэтому

. (13.50)

Соотношение (13.50) означает, что поле ротора не имеет источников. Поэтому можно утверждать, что если некоторое векторное поле можно представить в виде ротора векторной функции, то это поле не имеет источников. Именно поэтому поток через любую поверхность S, опирающуюся на данный контур Г всегда одинаков в соответствии с теоремой Стокса. Линии поля, представленного в виде ротора всегда замкнуты.

Применим операцию ротор к градиенту скалярной функции:

. (13.51)

В векторном произведении в правой части (13.50) два одинаково направленных вектора. Поэтому оно равно нулю, а значит

. (13.52)

Формула (13.52)означает, что, если некоторое векторное поле можно представить в виде градиента скалярной функции, то ротор, а значит и циркуляция такого векторного поля равна нулю.

Результат применения операции ротор к ротору с точки зрения векторного анализа представляет собой двойное векторное произведение, которое раскрывается по правилу «bac-cab» :

. (13.53)

Поэтому

. (13.54)


 

Циркуляция и дивергенция электростатического поля

Циркуляция и ротор электростатического поля

Силы электростатического поля являются консервативными. Поэтому их работа на любом замкнутом пути равна нулю:

. (14.55)

Следовательно, циркуляция вектора по любому контуру

. (14.56)

Согласно теореме Стокса, . Поэтому поток через любую поверхность S, опирающуюся на некоторый Г

(14.57)

Поскольку (14.57) выполняется для любой поверхности, то должно быть равно нулю подынтегральное выражение:

(14.58)

Формулы(14.56) и(14.58)означают: невозможно существование электростатического поля такой конфигурации, где . Например, невозможно создать электростатическое поле, отличное от нуля только в определенном объёме. Действительно, по всякому контуру, частично проходящему в этом объеме, циркуляция будет не равна нулю, чего быть не может!

Равенство нулю указывает на то, что можно представить в виде градиента скалярной функции. некоторой скалярной . И действительно

(14.59)

 

Теорема Гаусса

Вспомним о том, что поток любого вектора через замкнутую поверхность численно равен количеству линий, выходящих из поверхности наружу. Мы доказывали, что количество линий выходящих из положительного заряда одинаково на любом расстоянии от него и равно . Поэтому для точечного заряда справедливо соотношение:

(14.60)

Если внутри некоторой замкнутой поверхности S находится N зарядов , то по принципу суперпозиций . Поэтому поток результирующего поля через поверхность S:

(14.61)

Таким образом, можно утверждать, что поток вектора напряженности электростатического поля, через замкнутую поверхность

, (14.62)

т.е. равен алгебраической сумме зарядов внутри этой поверхности деленной на . Это утверждение называется теоремой Гаусса для вектора напряженности электростатического поля.

Учитывая малость элементарного заряда обычно при рассмотрении макроскопических задач распределение заряда в пространстве, описывают плотностью заряда:

, (14.63)

Соответственно соотношение (14.60)записывают в виде

, (14.64)

Необходимо учесть, что по теореме Остроградского - Гаусса

. Поэтому

, (14.65)

Это равенство должно выполняться для любого объема V, а значит

, (14.66)

Соотношение (13.66) называется теоремой Гаусса в дифференциальной форме.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...