Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

От натурфилософии к нейропсихологии 3 глава

О субоптимальности работы человека-оператора также говорили данные, собранные на основе экспертных оценок и представляемые в инженерной психологии в виде так называемых «МАВА—М A ВА таблиц». Эти таблицы сравнивают между собой области деятельности и отдельные задачи, в которых человек оказывается лучше машины (Men-are-better-at) или, напротив, машина лучше человека (Machines-are-better-at). Так, зада­чи по обнаружению сигнала в силу колебаний внимания и отмеченной тенденции к завышению критерия принятия решений человеком лучше было бы доверить машине. С другой стороны, запоминание больших мас­сивов информации и узнавание изображений первоначально считалось одной из областей, в которых человек был эффективнее машины. Разуме­ется, по мере развития компьютерных технологий количество таких обла­стей стало постепенно сокращаться. Лишь наиболее сложные задачи, тре­бующие глобальной оценки ситуации и выработки новых решений, причем часто на основании неполной информации, пока что прочно ос­таются в компетентности человека2.

2 Качество принимаемых человеком решений резко снижается в условиях стресса,
вызываемого в первую очередь недостатком времени. Поэтому, например, в современной
ядерной энергетике предпринимаются специальные меры для того, чтобы в течение 10—
20 минут фиксировать развитие событий, не давая человеку возможности реализовать
слишком поспешные решения. Подобные задержки «на обдумывание», к сожалению,
невозможны в работе летчика или водителя, где действовать часто приходится в интерва­
лах времени порядка долей секунды (за 1 секунду автомобиль, движущийся со скоростью
60 км/час, проезжает около 17м).                                                                                                         99


К компетенции человека продолжают и, безусловно, будут продолжать относиться задачи по принятию решения в условиях многокатегориально­ го выбора. В отличие от рассмотренной задачи обнаружения сигнала, где основания для решения могут быть представлены в виде одной-един-ственной переменной, в подобных задачах существует несколько каче­ственно различных систем критериев и несколько (обычно более двух) альтернативных решений. Специфически человеческим звеном здесь яв­ляется прежде всего оценка относительной важности (весовых коэффици­ентов) различных критериев. Такая оценка всегда довольно субъективна и не может быть сведена к одному критерию, даже такому существенно­му, как критерий стоимости. Например, если речь идет о выборе проекта нового предприятия, то наряду с критерием стоимости строительства (возможно, в сочетании с ожидаемыми доходами — критерий cost/ benefit) важную роль в том или ином контексте могут играть также и другие кри­терии, такие как критерии престижности или экологической безопаснос­ти. Сравнительную оценку важности критериев в каждом конкретном случае может дать только лицо (группа лиц), принимающее решение.

Помимо самой оценки специфическая сложность задач многокрите­риального выбора состоит в том, что «при их рассмотрении все доводы "за" и "против" не присутствуют в уме одновременно; иногда присут­ствует одна часть, в другое время — иная, причем первая исчезает из вида. Следовательно, различные цели или склонности по очереди берут "верх" и появляется неопределенность, которая озадачивает и мучает нас»3. В качестве простейшей исчерпывающей процедуры получения ве­совых коэффициентов отдельных критериев и их агрегации в общую оценку альтернатив в литературе по методам поддержки принятия реше­ний (Ларичев, 2002) рекомендуется следующая последовательность шагов:

1. Упорядочить критерии по важности.

2. Присвоить наиболее важному критерию оценку 100 баллов и, ис­
ходя из попарного отношения критериев по важности, дать в бал­
лах оценку каждому из них.

3. Сложить полученные баллы, а затем произвести нормировку кри­
териев (вычислить их весовые коэффициенты), разделив присво­
енные баллы на сумму весов.

4. Оценить значение каждой альтернативы по каждому из критери­
ев в отдельности по шкале от 0 до 100 баллов.

5. Определить общую оценку каждой альтернативы, используя фор­
мулу взвешенной суммы баллов (то есть просуммировать оценки
данной альтернативы по всем критерием с учетом весовых коэф­
фициентов последних).

3 Эта цитата взята из письма Бенджамина Франклина, датированного сентябрем 1772 года. Франклин рекомендует далее записывать аргументы «за» и «против» на левой и пра­вой стороне листа: «Когда я имею все это в поле зрения, я пытаюсь оценить их веса; если я найду два, каждый на другой стороне, которые кажутся мне равными, я их вычеркну... Если я считаю, что некоторые два довода "за" равны трем доводам "против", я вычеркиваю все пять; продолжая таким образом, я нахожу со временем, где находится баланс». Эти сообра­жения можно считать эскизом современных компьютерных программ, поддерживающих процессы принятия решений (см. 8.4.2). Проблемы данной области связаны с нетранзи­тивным и нелинейным характером человеческих предпочтений, накладывающим ограни-100   чения на математические операции с балльными оценками (см. Ларичев, 2002).


6. Выбрать в качестве лучшей альтернативу, получившую наиболь­шую общую оценку.

Развернувшиеся во второй половине 20-го века работы по автома­тизации отдельных функций и областей деятельности человека в целом проходили под лозунгом его освобождения от тяжелых и несвойствен­ных ему сенсомоторных задач. Предполагалось, что за человеком-опе­ратором постепенно останутся только функции когнитивного контроля за работой технических систем. С развитием информатики, электрони­ки и когнитивных исследований стали создаваться системы относитель­но полного технического контроля и исполнения действий (такие как Flight Management Systems, используемые в военной и гражданской авиа­ции для автоматического управления основными режимами полета). Постоянное увеличение степени сложности техники требовало от чело­века-пользователя сопоставимых, все более серьезных усилий по обуче­нию и пониманию работы систем. Одновременно, из-за технических и финансовых ограничений автоматизации часто подвергались относи­тельно изолированные фрагменты деятельности.

Результаты подобной фрагментарной замены человека компьютер­ными системами часто оказывались неудовлетворительными. В этих по­луавтоматизированных системах скорее сам человек оказался под конт­ролем автоматов, чем наоборот. Известный отечественный инженерный психолог Б.Ф. Ломов (например, Ломов, 1966) еще в начале 1960-х годов предупреждал об опасности такого развития, выдвинув вместе со своими коллегами принцип «активного оператора». Главным недостатком, или, по словам современной английской исследовательницы Лизанн Бэйнб-ридж, иронией автоматизации стало сегодня то, что оператору или, на­пример, летчику временами приходится действовать в еще более экстре­мальном диапазоне нагрузок, чем прежде. Относительно легкие задачи упростились за счет их автоматизации, тогда как трудные задачи стали более сложными в силу усложнения самих человеко-машинных систем, а также из-за того, что решать их приходится внезапно и из состояния недонагрузки. При внезапных повышенных нагрузках в условиях жестких временных ограничений возникает состояние острого стресса, меняющее протекание практически всех познавательных процессов. Стресс, в част­ности, ведет к эффекту так называемого туннельного зрения — резкому ог­раничению размеров функционального поля зрения и фиксации внима­ния на отдельных деталях, а не на сцене в целом (см. 4.2.2 и 9.4.3).

Центральной проблемой сегодня становится выравнивание этого дисбаланса, то есть избирательная поддержка (вплоть до полной замены4)

4 Речь идет о временной передаче управления автоматам. Примером могут служить
современные системы предотвращения столкновения с земной поверхностью (GCAS
Ground Collision Avoidance System), используемые в военной авиации. Эти системы оцени­
вают параметры движения самолета и с учетом рельефа местности, а также времени реак­
ции пилота автоматически уводят самолет в случае необходимости из опасной зоны.                 101


человека в тех случаях, когда он находится на пределе своих возможно­стей, и, напротив, эпизодическая передача ему дополнительных функ­ций (например, ручного управления самолетом) в периоды потенциаль­но опасной недонагрузки. В результате возникает новая задача адаптивной автоматизации. Она предполагает психологический мони­торинг функционального состояния человека с текущей оценкой степе­ни и характера его внимания, содержаний восприятия, понимания ак­туальной ситуации (или «осознания ситуации»situation awareness) и, насколько возможно, также непосредственных намерений. Хотя в об­щем виде эта задача еще очень долго не будет иметь решения, ее част­ные решения, похоже, возможны; они опираются на результаты при­кладных когнитивных исследований и также обсуждаются на страницах этой книги (см. 3.4.2 и 7.4.3).

Инженерную психологию всегда интересовала задача нахождения некоторого единого языка для описания работы человека и функциони­рования технических систем. Наиболее подходящим языком такого описания вначале считалась теория информации. С накоплением опро­вергающих это мнение данных (см. 2.1.3), а затем и с возникновением задачи адаптивной автоматизации стали меняться акценты, так что иногда сами машины стали описываться в антропоморфных терминах как продукты (артефакты) деятельности человека. Так, датчанин Йене Расмуссен (Rasmussen, 1986) предложил рассматривать все компоненты человеко-машинных систем в контексте трех, известных из теории дея­ тельности вопросов: «для чего?», «что?» и «как?» (см. 1.4.3). Им же была предложена трехуровневая модель операторской деятельности, в кото­рой на самом низком уровне поведение находится под контролем авто­матизированных навыков, на втором — хранящихся в памяти правил и на третьем — знаний о ситуации. Данная модель используется прежде всего для классификации ошибок оператора. В зависимости от уровня воз­никновения такие ошибки влекут за собой разную степень ответствен­ности. Например, авиадиспетчер может просто перепутать похожие ко­манды (неудачно расположенные рядом кнопки) или же, подумав, сознательно направить два самолета на одну и ту же посадочную полосу (см. 9.1.3).

Недостатком этой и аналогичных ранних моделей является то, что они были совершенно недостаточно обоснованы с точки зрения фунда­ментальных исследований. В частности, их авторы полностью игнориро­вали нейрофизиологические и нейропсихологические данные, столь важные, как становится очевидно в последние годы, для создания более реалистических представлений о специфических особенностях и огра­ничениях возможностей человека в его взаимодействии с техническими системами (см. 7.4.3 и 8.4.3). Эти данные впервые заложили теоретико-экспериментальную основу для прикладных исследований на границе психологии и новых технологий, подтверждая старое правило «Нет ни-102  чего практичнее хорошей теории». Кроме того, классическая для этой


области проблематика стресса и утомления обусловила постоянный диа­лог исследований когнитивной организации с анализом функциональ­ных состояний (см. 9.4.3). Таким образом, развитие инженерной психо­логии и такого нового ее раздела, как когнитивная эргономика (дисциплина, занимающаяся оптимизацией взаимодействия человека и компьютерных систем), сегодня находится под прямым влиянием иссле­дований в широкой области когнитивных и аффективных нейронаук.

2.1.3 Поиски ограничений пропускной способности

Вернемся к ситуации, в которой оказались исследования познаватель­ных процессов в 1950-е годы. Основные экспериментальные работы этого периода имели прикладной характер и были направлены на воз­можно более точное описание ограничений информационной пропуск­ной способности человека. К числу основных феноменов, иллюстриру­ющих такие ограничения, обычно относят следующие:

1. Время реакции выбора — замедление времени реакции с увеличени­
ем числа альтернатив.

2. Избирательность (селективность) внимания — невозможность од­
новременно и в равной степени следить за содержанием двух раз­
личных сообщений.

3. Колебание внимания — невозможность в течение сколько-нибудь
продолжительного времени с одинаковой «бдительностью» (vigi­
lance) следить, скажем, за экраном радиолокатора.

4. Объем непосредственной памяти — невозможность запомнить после
однократного предъявления более чем 5—7 не связанных между со­
бой объектов или символов.

5. Психологический рефрактерный период — задержка реакции на вто­
ром из двух следующих друг за другом с достаточно малым интер­
валом (менее 150 мс) стимулов.

В последующих главах эти феномены будут рассмотрены нами в контексте современных представлений о возможных ограничениях по­знавательных процессов. Мы остановимся здесь подробно на самом первом в списке этих феноменов. Еще в 1885 году один из учеников Вундта Меркель установил, что время реакции выбора («В-реакция» Дондерса: η стимулов и «реакций) линейно зависит от логарифма чис­ла стимулов. Этот же результат был получен почти 70 лет спустя амери­канцами Хиком и Хэйменом, которые объяснили его как следствие за­висимости времени реакции от количества средней информации:

ВР = а+ в*Н,

где а — параметр, задаваемый временем передачи информации на входе и выходе канала; в — величина, обратная пропускной способности ка­нала, и Η — среднее количество информации, определяемое по форму­лам, приведенным в начале этой главы. Это соотношение, получившее  ЮЗ


название закона Хика, сохраняется при различных способах варьирова­ния средней информации: изменении числа альтернатив, изменении абсолютных вероятностей при постоянном числе альтернатив и, нако­нец, введении различных вероятностей следования одних сигналов за другими (рис. 2.2А).

В рамках инженерно-психологических исследований ограничений избирательного внимания и непосредственной памяти Дональд Брод-бент (ученик Бартлетта и бывший военный летчик, участвовавший в воздушной битве за Англию) опубликовал в 1954 году статью под назва­нием «Механическая модель внимания и непосредственной памяти че­ловека», где впервые описал внимание как фильтр, осуществляющий отбор релевантной с точки зрения задачи сенсорной информации. Этот фильтр расположен на входе в непосредственную память — «централь­ный информационный канал с ограниченной пропускной способнос­тью» — и осуществляет отбор релевантной информации по принципу «все или ничего» (рис. 2.3). Близкие идеи легли в основу монографии Бродбента «Восприятие и коммуникация», вышедшей в свет в 1958 году. В этой работе был обобщен гигантский объем данных, полученный в рамках информационного подхода. Это развитие целиком соответство­вало неопозитивистским канонам — как и в необихевиоризме автором проводился формальный анализ наблюдаемых переменных, а человек трактовался как относительно закрытый «черный ящик». Очерки пси­хологии с точки зрения статистической теории связи появились в конце 1950 — начале 1960-х годов. Однако это было время, когда информаци­онный подход стал подвергаться серьезной критике.


2          3         0           1

количество информации, бит


Рис. 2.2. Закон Хика — зависимость времени реакции выбора от информативности сиг-104   налов: А. Первоначальные данные; Б. Данные, собранные за последующие 10 лет.



 


Рис. 2.3. Одна из первых информационных моделей памяти и внимания, предложенная Бродбентом (Broadbent, 1958).

Прежде всего, установленные законы стали обрастать дополнения­ми и оговорками, учитывающими субъективную значимость и есте­ственность различных ситуаций. Так, едва ли не центральной пробле­мой инженерной психологии в эти годы стала проблема естественного соответствия сигналов и ответов испытуемого: время реакции ускоря­ется, если, например, на акустический сигнал, подаваемый справа, нуж­но отвечать правой рукой. Разумеется, этот эффект можно попытаться объяснить строго физикалистски, проследив движение информации по нейрофизиологическим путям — от правого уха в контрлатеральное ле­вое полушарие, которое, в свою очередь, иннервирует преимуществен­но правую часть тела. Однако такое объяснение может быть легко по­ставлено под сомнение. Если попросить испытуемого скрестить руки, то на сигналы, поступающие справа, он начинает быстрее отвечать ле­вой рукой. Существенной, таким образом, оказывается близость сигна­лов и ответов в феноменальном, а не физическом пространстве5. Встает типичный для собственно когнитивной психологии вопрос о форме реп­резентации — о том, каким образом могут быть внутренне представлены внешнее окружение, сигналы и схема тела.

Исследования времени реакции выбора постепенно выявили чрез­вычайно пеструю картину, совершенно не укладывающуюся в прокрус-


5 Надо сказать, что подчеркивание роли таких переменных, как значимость и есте­ственность, типично как раз для «аристотелевского», а не «галилеевского» способа обра­зования понятия (см. 1.3.1).


105


106


тово ложе закона Хика (рис. 2.2А). Для разных типов сигналов и отве­тов, а также для различных их комбинаций параметры получаемых за­висимостей оказались разными. Наиболее «неудобными» являются те случаи, в которых вообще не было обнаружено сколько-нибудь выра­женной зависимости времени реакции от количества информации в идентифицируемых сигналах (функции «ж», «з», «и», «к» на рис. 2.2Б). При интерпретации этих данных с помощью закона Хика получался бессмысленный вывод о безграничной пропускной способности. Един­ственный закон, который был подтвержден этими исследованиями, со­стоял в демонстрации почти безграничной адаптируемости человека к подобным искусственным условиям: в одной из британских работ по времени реакции выбора, продолжавшейся в течение пяти месяцев, число проб превысило 45 000, но время реакции испытуемого все еще продолжало снижаться.

В 1956 году видный американский психолингвист и последователь Хомского Джордж Миллер опубликовал ставшую классической работу «Магическое число семь, плюс или минус два» (см. Миллер, 1964). Он по­казал, что ограниченность объема кратковременной памяти определя­ется совсем не количеством объективно измеренной в битах информа­ции, а относительно небольшим количеством (порядка 7) «единиц», или «кусков» («чонков» от англ. chunks) субъективной организации мате­риала. В качестве подобных единиц организации материала в непосред­ственной памяти могут выступать буквы или цифры, слова или, напри­мер, короткие предложения. Количество информации будет во всех этих случаях совершенно различным. Размеры этих единиц, как пока­зал Миллер в опытах на себе, меняются в процессе обучения. Так, для человека, совершенно незнакомого с вычислительной техникой, слово «IBM» представляет собой последовательность трех единиц, тогда как для всех лиц, знающих, что это название крупнейшей компьютерной фирмы, — всего лишь одну единицу.

Точно так же в исследовании зрительного различения было уста­новлено, что комбинация перцептивных признаков, которая с логичес­кой точки зрения не меняет неопределенность стимулов (а следователь­но, не меняет и количество информации), тем не менее, приводит к значительному изменению пропускной способности. Так, в случае од­номерных стимулов, варьирующих только по цвету, яркости или вели­чине, испытуемый может перерабатывать 2,75 бита информации, чему соответствуют безошибочные различения и категоризация примерно 7 стимулов. Если же стимулы меняются одновременно по всем трем пара­метрам, причем меняются полностью коррелированным (избыточным) образом, так что формально по-прежнему есть только одно стимульное измерение, количество передаваемой информации возрастает до 4,11 битов. Это означает успешную категоризацию уже 17 стимулов. После таких результатов необходимость изучения внутренней репрезентации цвета, яркости, величины и других перцептивных категорий станови-


I         лась понятной даже наиболее позитивистски ориентированным пред-

ставителям информационного подхода.

Важную роль в создании методологического климата, сделавшего
возможным переход к когнитивной психологии, сыграл принцип кон­
вергирующих операций
Гарнера, Хэйка и Эриксена (Garner, Hake &
Eriksen, 1956), означавший либерализацию и даже ревизию требований
ортодоксального неопозитивизма (см. 1.3.2). Основная мысль состояла
в том, что изучать можно и то, что не является непосредственно наблю­
даемым. Границы подобного, «скрытого за поверхностью» регистрируе­
мых событий предмета исследований, лучше всего могут быть намечены
при движении по различным, но сходящимся (конвергирующим) на­
правлениям. Например, если обнаруживается сходство оценок продол­
жительности работы некоторого гипотетического внутреннего механизма,
|                           полученное с помощью двух или большего числа независимых методичес-

!                                           ких процедур, то можно допустить, что такой механизм действительно

существует — даже если результаты отдельных методик для этого допу­
щения недостаточно убедительны. Авторы попытались в первую очередь
разделить сенсорные аспекты восприятия и чисто моторные реакции,
заменив радикальное операционалистское утверждение: «восприятие =
определенный способ реагирования на сенсорную стимуляцию» на бо-
1                                          лее осторожное: «восприятие = некоторое внутреннее событие, кото-

1                                           рое может проявляться в моторных реакциях, но принципиально от

I                          них отлично».

1                                                    В результате психология восприятия была вновь выделена в качестве

самостоятельной области исследований. Поскольку понятия гештальт-психологии казались слишком широкими и слишком менталистскими, была предпринята попытка использовать для количественного описания структуры восприятия аппарат статистической теории связи. «Многие из гештальтистских принципов, — писал один из ведущих представителей информационного подхода Фрэд Эттнив, — связаны с количеством ин­формации. Хороший гештальт — это форма с более высокой степенью избыточности. Такие законы перцептивной организации, как законы близости, сходства, хорошего продолжения и общей судьбы, совершен­но очевидно относятся к ситуациям, в которых происходит уменьшение неопределенности» (Attneave, 1965, р. 117). Однако применение теории информации для описания перцептивной организации также натолкну­лось на трудности. Искусственным было уже требование, согласно ко­торому наблюдатель заранее должен знать весь набор возможных собы­тий. Гештальтпсихологи, например, всегда утверждали, что восприятие является процессом, который строится «здесь и теперь»: в конкретной ситуации и вне зависимости от прошлого опыта.

Следует отметить, что еще в 1950 году английский кибернетик До­
нальд М. Маккай (МасКау, 1950) предупреждал о принципиальных про­
блемах с применимостью статистической теории связи в психологии,
1              предлагая создать или, по крайней мере, подумать о создании теории, в

которой информация в некотором сообщении оценивалась бы числом когнитивных операций, которые осуществляются при моделировании


его содержания. Маккай даже создал вариант применимой для психо­логических целей методики измерения «структурной информации». Как и ряд аналогичных попыток, его теория структурной информации не получила сколько-нибудь широкого распространения (за исключе­нием отдельных исследований восприятия формы и цвета — см. 3.3.1). Не получил широкого распространения и сам кибернетический подход, предложивший интересные, но очень математизированные средства описания процессов управления в сложных динамических системах. Напротив, чрезвычайно популярной стала общая идея реконструкции организмом своего окружения и мысленной работы с этой внутренней моделью. Эта идея легла в основу следующей метафоры эксперимен­тальной психологии.

2.2 Компьютерная метафора

2.2.1 Ментальные модели и аналогия с компьютером

Новый подход к анализу психических процессов, возникший в начале 1960-х годов, имел длительную предысторию. В 1894 году ученик Гельм-гольца Генрих Герц писал: «Отношение динамической модели к систе­ме, моделью которой она считается, это в точности отношение образов вещей, которые создает наш разум, к самим вещам... Согласованность между разумом и природой может быть, таким образом, приравнена со­гласованности двух систем, являющихся моделями друг друга; мы даже могли бы объяснить эту согласованность, предположив, что наш разум способен создавать динамические модели вещей и работать с ними» (Hertz, 1894, S. 177). Через полстолетия эту мысль развил сотрудник Бартлетта и один из создателей инженерной психологии Кеннет Крэйк: «Если организм несет в голове мелкомасштабную модель внешнего ок­ружения и своих возможных действий, он способен проверять различ­ные альтернативы, определять наилучшие из них, реагировать на буду­щее развитие ситуации и вообще во всех отношениях вести себя более полноценно, безопасно и компетентно, попадая в сложные условия» (Craik, 1943, р. 61)6.

Анализируя «внутренние модели» пространственного окружения, мы сразу же обнаруживаем, что они имеют «матрешечную» организа­цию, то есть обычно состоят из нескольких рекурсивно вложенных друг в


108


6 Элегантную формулировку сути когнитивного подхода в нейрофизиологии (не ис­пользуя, впрочем, термина «когнитивный») несколько позже предложил H.A. Бернштейн: «Мозговое отражение (или отражения) мира строится по типу моделей Мозг не запечат­левает поэлементно и пассивно вещественный инвентарь внешнего мира.., но налагает на него те операторы, которые моделируют этот мир, отливая модель в последовательно уточняемые и углубляемые формы» (1966, с. 287).


друга репрезентаций. Например, мы можем представить себе карту севе­ро-востока России, так что Санкт-Петербург будет при этом представлен чем-то вроде точки, а затем развернуть эту «точку» в полномасштабное пространственное представление и т.д. (см. 6.3.2). Рекурсивный характер имеют наши представления о других людях и их знаниях о нас (см. 7.4.1). Наконец, рекурсивность типична для нашего языка, что подчеркивалось в теории порождающей грамматики Хомского (см. 1.3.3 и 8.4.3). Исполь­зуя эту теорию, можно было сделать следующий шаг — объявить разли­чия всех этих форм репрезентации поверхностными и постулировать единый абстрактный формат представления знаний на уровне глубинных структур, допускающих алгоритмическое описание. Вот почему в нача­ле 1960-х годов процессы познания стали трактоваться по аналогии с процессами вычислений в компьютере. Понимание того, что человек ак­тивно «перерабатывает информацию», строя внутренние модели (репре­зентации) окружения, означало переход от информационного подхода в узком смысле слова к когнитивной психологии.

Эта компьютерная метафора когнитивной психологии открыла принципиально новые теоретические возможности, заменив характер­ное для психологии 19-го — первой половины 20-го веков представление об энергетическом обмене организма со средой на представление о зна­чительно более быстром и гибком информационном обмене. Так, Вундт и его современники полагали, что только что открытый закон сохранения энергии требует признания строгого психофизического параллелизма, то есть признания — в полном согласии с картезианской философской тра­дицией (см. 1.1.1 и 9.1.3) — полной независимости (в смысле причин и следствий) телесных и ментальных событий. Но вычислительное устрой­ство, потребляя весьма незначительное количество энергии, может уп­равлять огромными механизмами. Поэтому требование психофизичес­кого параллелизма перестало вдруг казаться строго обязательным. Далее, хотя трудно сказать, какие процессы лежат в основе некоторой чисто психической работы, например, восприятия картины Рембрандта, мож­но легко представить компьютер или специализированный электронный прибор, осуществляющий переработку информации, которая заканчи­вается адекватным ситуации ответом.

Первыми работами нового направления можно считать исследова­ния процессов образования искусственных понятий Джеромом Бруне-ром и сотрудниками, а также работы Ньюэлла, Саймона и Шоу, создав­ших ряд машинных моделей мышления, в том числе «Логик—теоретик» и «Универсальный решатель задач». Общими чертами этих работ явля­ются не только массивное использование формально-логического ана­лиза (например, используемый в монографии Брунера теоретический аппарат совпадает с правилами индукции Дж.С. Милля), но и восста­новление авторитета более ранних, «добихевиористских» исследований познания. В случае Ньюэлла и его коллег это были Отто Зельц и геш-тальтпсихология, а в случае Брунера — вюрцбургская школа и диссер-

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...